This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345336 #31 Feb 05 2025 18:31:56 %S A345336 2,3,101,103,257,283,347,401,463,491,499,509,571,599,653,661,743,751, %T A345336 797,1013,1021,1031,1039,1103,1201,1229,1237,1301,1381,1399,1427,1453, %U A345336 1499,1553,1571,1597,1667,1733,1741,1759,1823,2003,2011 %N A345336 Prime numbers p such that the sum and the product of digits of p^2 are both squares. %C A345336 Primes in A061868. %H A345336 Karl-Heinz Hofmann, <a href="/A345336/b345336.txt">Table of n, a(n) for n = 1..10000</a> %e A345336 101^2 = 10201. The sum of the digits is 4, the product is 0: both are squares. Thus, 101 is in the sequence. %p A345336 filter:= proc(n) local L; %p A345336 if not isprime(n) then return false fi; %p A345336 L:= convert(n^2,base,10); %p A345336 issqr(convert(L,`+`)) and issqr(convert(L,`*`)) %p A345336 end proc: %p A345336 select(filter, [$1..10000]); # _Robert Israel_, Jun 17 2021 %t A345336 Select[Range[3000], PrimeQ[#] && IntegerQ[Sqrt[Total[IntegerDigits[#^2]]]] && IntegerQ[Sqrt[Times @@ IntegerDigits[#^2]]] &] %t A345336 Select[Prime[Range[3500]],With[{c=IntegerDigits[#^2]},AllTrue[{Sqrt[Total[c]],Sqrt[Times@@c]},IntegerQ]]&] (* _Harvey P. Dale_, Feb 05 2025 *) %o A345336 (PARI) isok(p) =if (isprime(p), my(d=digits(p^2)); issquare(vecsum(d)) && issquare(vecprod(d))); \\ _Michel Marcus_, Jun 14 2021 %o A345336 (Python) from numbthy import isprime %o A345336 counter = 1 %o A345336 for p in range (2,1090821): %o A345336 if isprime(p) and (counter <= 10000): %o A345336 pp_product = 1 %o A345336 pp_sum = 0 %o A345336 for digit in range (0, len(str(p*p))): %o A345336 pp_product *= int(str(p*p)[digit]) %o A345336 pp_sum += int(str(p*p)[digit]) %o A345336 if pow(int(pp_product**0.5),2) == pp_product: %o A345336 if pow(int(pp_sum**0.5),2) == pp_sum: %o A345336 print(counter, p) %o A345336 counter += 1; # _Karl-Heinz Hofmann_, Jun 17 2021 %Y A345336 Cf. A061868. %K A345336 nonn,base %O A345336 1,1 %A A345336 _Tanya Khovanova_, Jun 14 2021