This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345337 #12 Jul 31 2021 17:02:50 %S A345337 1479604544,8429250269,31738437018,47347345408,101802671905, %T A345337 213625838382,269736008608,288202145792,353946845525,355891431456, %U A345337 359543904192,434029382875,453675031150,467943544849,470899924000,476304861791,568433238331,690221638656,706199665600 %N A345337 Numbers that are the sum of four fifth powers in three or more ways. %C A345337 No numbers that are the sum of four fifth powers in four ways have been found. As a result, there is no corresponding sequence for the sum of four fifth powers in exactly three ways. %H A345337 Sean A. Irvine, <a href="/A345337/b345337.txt">Table of n, a(n) for n = 1..500</a> %e A345337 8429250269 is a term because 8429250269 = 4^5 + 41^5 + 73^5 + 91^5 = 13^5 + 28^5 + 82^5 + 86^5 = 21^5 + 27^5 + 68^5 + 93^5. %o A345337 (Python) %o A345337 from itertools import combinations_with_replacement as cwr %o A345337 from collections import defaultdict %o A345337 keep = defaultdict(lambda: 0) %o A345337 power_terms = [x**5 for x in range(1, 1000)] %o A345337 for pos in cwr(power_terms, 4): %o A345337 tot = sum(pos) %o A345337 keep[tot] += 1 %o A345337 rets = sorted([k for k, v in keep.items() if v >= 3]) %o A345337 for x in range(len(rets)): %o A345337 print(rets[x]) %Y A345337 Cf. A342687, A344241, A344644. %K A345337 nonn %O A345337 1,1 %A A345337 _David Consiglio, Jr._, Jun 14 2021