cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345337 Numbers that are the sum of four fifth powers in three or more ways.

This page as a plain text file.
%I A345337 #12 Jul 31 2021 17:02:50
%S A345337 1479604544,8429250269,31738437018,47347345408,101802671905,
%T A345337 213625838382,269736008608,288202145792,353946845525,355891431456,
%U A345337 359543904192,434029382875,453675031150,467943544849,470899924000,476304861791,568433238331,690221638656,706199665600
%N A345337 Numbers that are the sum of four fifth powers in three or more ways.
%C A345337 No numbers that are the sum of four fifth powers in four ways have been found. As a result, there is no corresponding sequence for the sum of four fifth powers in exactly three ways.
%H A345337 Sean A. Irvine, <a href="/A345337/b345337.txt">Table of n, a(n) for n = 1..500</a>
%e A345337 8429250269 is a term because 8429250269 = 4^5 + 41^5 + 73^5 + 91^5  = 13^5 + 28^5 + 82^5 + 86^5  = 21^5 + 27^5 + 68^5 + 93^5.
%o A345337 (Python)
%o A345337 from itertools import combinations_with_replacement as cwr
%o A345337 from collections import defaultdict
%o A345337 keep = defaultdict(lambda: 0)
%o A345337 power_terms = [x**5 for x in range(1, 1000)]
%o A345337 for pos in cwr(power_terms, 4):
%o A345337     tot = sum(pos)
%o A345337     keep[tot] += 1
%o A345337 rets = sorted([k for k, v in keep.items() if v >= 3])
%o A345337 for x in range(len(rets)):
%o A345337     print(rets[x])
%Y A345337 Cf. A342687, A344241, A344644.
%K A345337 nonn
%O A345337 1,1
%A A345337 _David Consiglio, Jr._, Jun 14 2021