cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345384 Decimal expansion of Sum_{k>=2} (-1)^k * zeta''(k).

This page as a plain text file.
%I A345384 #11 Jun 19 2021 02:57:13
%S A345384 1,7,9,7,7,4,4,3,2,7,6,1,8,3,6,8,0,5,0,8,4,3,8,5,4,0,8,4,0,3,3,0,5,1,
%T A345384 6,1,5,7,9,8,9,1,5,7,1,0,8,4,4,4,0,3,1,4,4,0,9,1,6,5,3,0,5,9,6,0,9,0,
%U A345384 6,7,0,4,2,7,5,3,5,0,5,5,0,4,2,0,5,8,5,5,1,6,9,3,0,4,6,1,2,0,5,9,0,9,9,4,5
%N A345384 Decimal expansion of Sum_{k>=2} (-1)^k * zeta''(k).
%H A345384 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 528.
%F A345384 Equals Sum_{k>=1} log(k)^2 / (k*(k+1)).
%e A345384 1.797744327618368050843854084033051615798915710844403144091653059609067...
%p A345384 evalf(Sum((-1)^k*Zeta(2, k), k = 2..infinity), 120);
%t A345384 RealDigits[Sum[(-1)^k*Zeta''[k], {k, 2, 1000}], 10, 110][[1]]
%o A345384 (PARI) sumalt(k=2, (-1)^k * zeta''(k))
%Y A345384 Cf. A085361, A345385.
%K A345384 nonn,cons
%O A345384 1,2
%A A345384 _Vaclav Kotesovec_, Jun 17 2021