This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345409 #9 Jun 18 2021 19:50:42 %S A345409 44,88,110,176,424,808,908,928,1070,1090,1150,1190,1312,1372,1616, %T A345409 1676,1736,2222,2332,2552,2662,2992,3212,4114,4334,4444,4664,4774, %U A345409 4994,5104,5324,5434,6226,6776,6886,7106,7436,8338,8558,8998,9218,9328,9548,10010,10120,10450,10670,10780,11000,11110 %N A345409 Numbers that are the sum of an emirp and its reversal. %H A345409 Robert Israel, <a href="/A345409/b345409.txt">Table of n, a(n) for n = 1..10000</a> %e A345409 a(3) = 110 is a member because 110 = 37+73 where 37 is an emirp. %p A345409 revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: %p A345409 f:= proc(n) local r; %p A345409 if not isprime(n) then return NULL fi; %p A345409 r:= revdigs(n); %p A345409 if r > n and isprime(r) then return r+n fi %p A345409 end proc: %p A345409 S:= map(f, {seq(seq(seq(i*10^d+j,j=1..10^d-1,2),i=[1,3,7,9]),d=1..4)}): %p A345409 sort(convert(S,list)); %o A345409 (Python) %o A345409 from sympy import isprime, nextprime %o A345409 def epgen(start=1, end=float('inf')): # generates unique emirp/prime pairs %o A345409 p = nextprime(start-1) %o A345409 while p <= end: %o A345409 revp = int(str(p)[::-1]) %o A345409 if p < revp and isprime(revp): yield (p, revp) %o A345409 p = nextprime(p) %o A345409 def aupto(lim): %o A345409 epsums = set(sum(ep) for ep in epgen(1, lim)) %o A345409 return sorted(filter(lambda x: x<=lim, epsums)) %o A345409 print(aupto(11111)) # _Michael S. Branicky_, Jun 18 2021 %Y A345409 Cf. A006567, A345408. %K A345409 nonn %O A345409 1,1 %A A345409 _J. M. Bergot_ and _Robert Israel_, Jun 18 2021