This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345410 #25 May 27 2024 07:14:16 %S A345410 44,1090,10450,5104,88888,10780,289982,299992,482174,478874,868868, %T A345410 499994,1073270,1087790,1071070,1069970,10904990,10794980,1091090, %U A345410 10892990,1100000,29955992,1101100,26688662,31022002,27599572,46400354,44688644,29821792,45289244,30122092,26988962 %N A345410 a(n) is the least number that is the sum of an emirp and its reversal in exactly n ways. %C A345410 Interchanging an emirp and its reversal is not counted as a different way. %C A345410 a(n) is the least number k such that there are exactly n unordered pairs of distinct primes (p,p') such that p' is the digit reversal of p and p+p' = k. %C A345410 Are terms not divisible by 3? _Amiram Eldar_ finds proof they are; A056964(n) = n + reverse(n) is divisible by 3 if and only if n is divisible by 3. But emirps are primes (other than 3) so they are not divisible by 3. - _David A. Corneth_, Jun 19 2021 %H A345410 David A. Corneth, <a href="/A345410/b345410.txt">Table of n, a(n) for n = 1..423</a> %H A345410 David A. Corneth, <a href="/A345410/a345410.gp.txt">A few examples</a> %e A345410 a(3) = 10450 because 10450 = 1229+9221 = 1409+9041 = 3407+7043. %p A345410 revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: %p A345410 isemirp1:= proc(n) local r; %p A345410 if not isprime(n) then return false fi; %p A345410 r:= revdigs(n); %p A345410 r > n and isprime(r) %p A345410 end proc: %p A345410 E:= select(isemirp1, [seq(seq(seq(i*10^d+j,j=1..10^d-1,2),i=[1,3,7,9]),d=1..5)]): %p A345410 V:= sort(map(t -> t+revdigs(t),E)): %p A345410 N:= nops(V): %p A345410 W:= Vector(16): %p A345410 i:= 1: %p A345410 while i < N do %p A345410 for j from 1 to N-i while V[i+j]=V[i] do od: %p A345410 if j <= 16 and W[j] = 0 then W[j]:= V[i] fi; %p A345410 i:= i+j; %p A345410 od: %p A345410 convert(W,list); %o A345410 (Python) %o A345410 from itertools import product %o A345410 from collections import Counter %o A345410 from sympy import isprime, nextprime %o A345410 def epgen(start=1, end=float('inf')): # generates unique emirp/prime pairs %o A345410 digits = 2 %o A345410 while True: %o A345410 for first in "1379": %o A345410 for last in "1379": %o A345410 if last < first: continue %o A345410 for mid in product("0123456789", repeat=digits-2): %o A345410 strp = first + "".join(mid) + last %o A345410 revstrp = strp[::-1] %o A345410 if strp >= revstrp: continue %o A345410 p = int(strp) %o A345410 if p > end: return %o A345410 revp = int(strp[::-1]) %o A345410 if isprime(p) and isprime(revp): yield (p, revp) %o A345410 digits += 1 %o A345410 def aupto(lim): %o A345410 alst = [] %o A345410 c = Counter(sum(ep) for ep in epgen(1, lim) if sum(ep) <= lim) %o A345410 r = set(c.values()) %o A345410 for i in range(1, max(r)+1): %o A345410 if i in r: alst.append(min(s for s in c if c[s] == i)) %o A345410 else: break %o A345410 return alst %o A345410 print(aupto(11*10**5)) # _Michael S. Branicky_, Jun 19 2021 %Y A345410 Cf. A006567, A345408, A345409. %K A345410 nonn,base %O A345410 1,1 %A A345410 _J. M. Bergot_ and _Robert Israel_, Jun 18 2021 %E A345410 More terms from _David A. Corneth_, Jun 18 2021