A345413 Decimal expansion of exp(gamma + M)*(G - 7*zeta(3)/(4*Pi))/4, where gamma is Euler's constant (A001620), M is Mertens's constant (A077761) and G is Catalan's constant (A006752).
1, 4, 2, 4, 8, 6, 7, 6, 7, 5, 6, 2, 9, 7, 6, 6, 7, 7, 6, 6, 0, 1, 3, 1, 1, 9, 0, 3, 8, 5, 1, 6, 4, 8, 5, 8, 2, 5, 6, 9, 9, 0, 6, 5, 0, 1, 9, 5, 6, 1, 7, 1, 5, 4, 1, 8, 7, 3, 9, 8, 3, 8, 3, 4, 1, 3, 2, 1, 8, 0, 8, 4, 4, 0, 3, 7, 1, 5, 8, 3, 2, 8, 8, 1, 9, 5, 4
Offset: 0
Examples
0.14248676756297667766013119038516485825699065019561...
Links
- Nilotpal Kanti Sinha and Marek Wolf, On a unified theory of numbers, arXiv:1009.4810 [math.NT], 2010-2011. See section 8, p. 11, eq. 37.
Programs
-
Mathematica
M = EulerGamma - NSum[PrimeZetaP[k]/k, {k, 2, Infinity}, WorkingPrecision -> 300, NSumTerms -> 300]; RealDigits[Exp[EulerGamma + M]*(Catalan - 7*Zeta[3]/(4*Pi))/4, 10, 100][[1]]
Formula
Equals lim_{n->oo} (1/log(n)^2) * Sum_{k=1..n} (1/gamma_k) * (1/k + 1/prime(k)) * (arctan(gamma_k/gamma_n))^2 * exp(H(k) + Sum_{i=1..k} 1/prime(i))), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma_k is the imaginary part of the k-th nontrivial zero of the Riemann zeta function.
Comments