cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345417 Table read by upward antidiagonals: Given m, n >= 1, write gcd(prime(m),prime(n)) as d = u*prime(m)+v*prime(n) where u, v are minimal; T(m,n) = u.

Original entry on oeis.org

0, 1, -1, 1, 0, -2, 1, -1, 2, -3, 1, 1, 0, -2, -5, 1, -1, -2, 3, 4, -6, 1, 1, 1, 0, -2, -4, -8, 1, -1, 2, 2, -3, -5, 6, -9, 1, 1, -2, -1, 0, 2, 7, -6, -11, 1, -1, -1, -2, -5, 6, 5, 4, 8, -14, 1, -1, 2, 3, 2, 0, -3, -8, -9, 10, -15, 1, 1, -1, -3, -4, -3, 4, 7, 10, 6, -10, -18
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2021

Keywords

Comments

The gcd is 1 unless m=n when it is m; v is given in A345418. Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when m=n. If we ignore the diagonal, the v table is the transpose of the u table.

Examples

			The u table (this entry) begins:
[0, -1, -2, -3, -5, -6, -8, -9, -11, -14, -15, -18, -20, -21, -23, -26]
[1, 0, 2, -2, 4, -4, 6, -6, 8, 10, -10, -12, 14, -14, 16, 18]
[1, -1, 0, 3, -2, -5, 7, 4, -9, 6, -6, 15, -8, -17, 19, -21]
[1, 1, -2, 0, -3, 2, 5, -8, 10, -4, 9, 16, 6, -6, -20, -15]
[1, -1, 1, 2, 0, 6, -3, 7, -2, 8, -14, -10, 15, 4, -17, -24]
[1, 1, 2, -1, -5, 0, 4, 3, -7, 9, 12, -17, 19, 10, -18, -4]
[1, -1, -2, -2, 2, -3, 0, 9, -4, 12, 11, -13, -12, -5, -11, 25]
[1, 1, -1, 3, -4, -2, -8, 0, -6, -3, -13, 2, 13, -9, 5, 14]
[1, -1, 2, -3, 1, 4, 3, 5, 0, -5, -4, -8, -16, 15, -2, -23]
[1, -1, -1, 1, -3, -4, -7, 2, 4, 0, 15, -14, 17, 3, 13, 11]
[1, 1, 1, -2, 5, -5, -6, 8, 3, -14, 0, 6, 4, -18, -3, 12]
[1, 1, -2, -3, 3, 6, 6, -1, 5, 11, -5, 0, 10, 7, 14, -10]
...
The v table (A345418) begins:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[-1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1]
[-2, 2, 1, -2, 1, 2, -2, -1, 2, -1, 1, -2, 1, 2, -2, 2]
[-3, -2, 3, 1, 2, -1, -2, 3, -3, 1, -2, -3, -1, 1, 3, 2]
[-5, 4, -2, -3, 1, -5, 2, -4, 1, -3, 5, 3, -4, -1, 4, 5]
[-6, -4, -5, 2, 6, 1, -3, -2, 4, -4, -5, 6, -6, -3, 5, 1]
[-8, 6, 7, 5, -3, 4, 1, -8, 3, -7, -6, 6, 5, 2, 4, -8]
[-9, -6, 4, -8, 7, 3, 9, 1, 5, 2, 8, -1, -6, 4, -2, -5]
[-11, 8, -9, 10, -2, -7, -4, -6, 1, 4, 3, 5, 9, -8, 1, 10]
[-14, 10, 6, -4, 8, 9, 12, -3, -5, 1, -14, 11, -12, -2, -8, -6]
[-15, -10, -6, 9, -14, 12, 11, -13, -4, 15, 1, -5, -3, 13, 2, -7]
[-18, -12, 15, 16, -10, -17, -13, 2, -8, -14, 6, 1, -9, -6, -11, 7]
...
		

Crossrefs

A345418 Table read by upward antidiagonals: Given m, n >= 1, write gcd(prime(m),prime(n)) as d = u*prime(m)+v*prime(n) where u, v are minimal; T(m,n) = v.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -3, 2, -1, 1, -5, -2, 1, 1, 1, -6, 4, 3, -2, -1, 1, -8, -4, -2, 1, 1, 1, 1, -9, 6, -5, -3, 2, 2, -1, 1, -11, -6, 7, 2, 1, -1, -2, 1, 1, -14, 8, 4, 5, 6, -5, -2, -1, -1, 1, -15, 10, -9, -8, -3, 1, 2, 3, 2, -1, 1, -18, -10, 6, 10, 7, 4, -3, -4, -3, -1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2021

Keywords

Comments

The gcd is 1 unless m=n when it is m; u is given in A345417. Minimal means minimize u^2+v^2. We follow Maple, PARI, etc., in setting u=0 and v=1 when m=n. If we ignore the diagonal, the v table is the transpose of the u table.

Examples

			The u table (A345417) begins:
[0, -1, -2, -3, -5, -6, -8, -9, -11, -14, -15, -18, -20, -21, -23, -26]
[1,  0,  2, -2,  4, -4,  6, -6,   8,  10, -10, -12,  14, -14,  16,  18]
[1, -1,  0,  3, -2, -5,  7,  4,  -9,   6,  -6,  15,  -8, -17,  19, -21]
[1,  1, -2,  0, -3,  2,  5, -8,  10,  -4,   9,  16,   6,  -6, -20, -15]
[1, -1,  1,  2,  0,  6, -3,  7,  -2,   8, -14, -10,  15,   4, -17, -24]
[1,  1,  2, -1, -5,  0,  4,  3,  -7,   9,  12, -17,  19,  10, -18,  -4]
[1, -1, -2, -2,  2, -3,  0,  9,  -4,  12,  11, -13, -12,  -5, -11,  25]
[1,  1, -1,  3, -4, -2, -8,  0,  -6,  -3, -13,   2,  13,  -9,   5,  14]
[1, -1,  2, -3,  1,  4,  3,  5,   0,  -5,  -4,  -8, -16,  15,  -2, -23]
[1, -1, -1,  1, -3, -4, -7,  2,   4,   0,  15, -14,  17,   3,  13,  11]
[1,  1,  1, -2,  5, -5, -6,  8,   3, -14,   0,   6,   4, -18,  -3,  12]
[1,  1, -2, -3,  3,  6,  6, -1,   5,  11,  -5,   0,  10,   7,  14, -10]
...
The v table (this entry) begins:
[  1,   1,  1,  1,   1,   1,   1,   1,  1,   1,   1,  1,   1,  1,   1,  1]
[ -1,   1, -1,  1,  -1,   1,  -1,   1, -1,  -1,   1,  1,  -1,  1,  -1, -1]
[ -2,   2,  1, -2,   1,   2,  -2,  -1,  2,  -1,   1, -2,   1,  2,  -2,  2]
[ -3,  -2,  3,  1,   2,  -1,  -2,   3, -3,   1,  -2, -3,  -1,  1,   3,  2]
[ -5,   4, -2, -3,   1,  -5,   2,  -4,  1,  -3,   5,  3,  -4, -1,   4,  5]
[ -6,  -4, -5,  2,   6,   1,  -3,  -2,  4,  -4,  -5,  6,  -6, -3,   5,  1]
[ -8,   6,  7,  5,  -3,   4,   1,  -8,  3,  -7,  -6,  6,   5,  2,   4, -8]
[ -9,  -6,  4, -8,   7,   3,   9,   1,  5,   2,   8, -1,  -6,  4,  -2, -5]
[-11,   8, -9, 10,  -2,  -7,  -4,  -6,  1,   4,   3,  5,   9, -8,   1, 10]
[-14,  10,  6, -4,   8,   9,  12,  -3, -5,   1, -14, 11, -12, -2,  -8, -6]
[-15, -10, -6,  9, -14,  12,  11, -13, -4,  15,   1, -5,  -3, 13,   2, -7]
[-18, -12, 15, 16, -10, -17, -13,   2, -8, -14,   6,  1,  -9, -6, -11,  7]
...
		

Crossrefs

Showing 1-2 of 2 results.