A345426 For 1<=x<=n, 1<=y<=n, write gcd(x,y) = u*x+v*y with u,v minimal; a(n) = sum of the values of u.
0, 1, 2, 4, 5, 8, 8, 12, 12, 14, 15, 21, 14, 20, 20, 22, 24, 23, 14, 25, 16, 19, 23, 39, 11, 5, 4, -3, 6, 20, 8, 24, -10, -19, -10, -22, -43, -30, -44, -43, -47, -39, -92, -38, -51, -61, -55, -57, -127, -174, -163, -152, -171, -176, -188, -165, -167, -197, -186, -177, -298, -228
Offset: 1
Keywords
Programs
-
Mathematica
T[x_, y_] := T[x, y] = Module[{u, v}, MinimalBy[{u, v} /. Solve[u^2 + v^2 <= x^2 + y^2 && u*x + v*y == GCD[x, y], {u, v}, Integers], #.# &]]; a[n_] := a[n] = Sum[T[x, y][[1, 1]], {x, 1, n}, {y, 1, n}]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 62}] (* Jean-François Alcover, Mar 28 2023 *)
-
Python
from sympy.core.numbers import igcdex def A345426(n): return sum(u for u, v, w in (igcdex(x, y) for x in range(1, n+1) for y in range(1, n+1))) # Chai Wah Wu, Jul 01 2021
Comments