A345427 For 1<=x<=n, 1<=y<=n, write gcd(x,y) = u*x+v*y with u,v minimal; a(n) = sum of the values of v.
1, 3, 5, 8, 10, 14, 15, 20, 21, 24, 26, 33, 27, 34, 35, 38, 41, 41, 33, 45, 37, 41, 46, 63, 36, 31, 31, 25, 35, 50, 39, 56, 23, 15, 25, 14, -6, 8, -5, -3, -6, 3, -49, 6, -6, -15, -8, -9, -78, -124, -112, -100, -118, -122, -133, -109, -110, -139, -127, -117, -237, -166, -185, -218, -171, -215
Offset: 1
Keywords
Programs
-
Mathematica
T[x_, y_] := T[x, y] = Module[{u, v}, MinimalBy[{u, v} /. Solve[u^2 + v^2 <= x^2 + y^2 && u*x + v*y == GCD[x, y], {u, v}, Integers], #.# &]]; a[n_] := a[n] = Sum[T[x, y][[1, 2]], {x, 1, n}, {y, 1, n}]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 62}] (* Jean-François Alcover, Mar 28 2023 *)
-
Python
from sympy.core.numbers import igcdex def A345427(n): return sum(v for u, v, w in (igcdex(x,y) for x in range(1,n+1) for y in range(1,n+1))) # Chai Wah Wu, Jun 22 2021
Comments