cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345437 Represent the ring R = {x+y*sqrt(-2): x, y rational integers} by the cells centered at the points (x,y) of a square grid; number the cells of the grid along a counterclockwise square spiral, with the cells at (0,0) and (1,0) numbered 0, 1. Sequence lists the index numbers of the cells which are 0 or a prime in R.

Original entry on oeis.org

0, 2, 3, 4, 6, 7, 8, 25, 26, 28, 29, 32, 34, 37, 38, 40, 41, 44, 46, 57, 63, 73, 79
Offset: 1

Views

Author

N. J. A. Sloane, Jun 23 2021

Keywords

Comments

R is the ring of integers in the quadratic number field Q(sqrt(-2)). The element x+y*sqrt(-2) in R has norm x^2+2*y^2.
A033715 gives the number of elements in R with norm n.
There are two units, +-1, of norm 1.
A341784 gives the norms of the primes in R, and A345438 gives the numbers of primes of those norms.

Examples

			One can read off the primes from the blue cells in the illustration. The first few primes are +-sqrt(-2), 2 of norm 2; +-1+-sqrt(-2), 4 of norm 3; +-3+-sqrt(-2), 4 of norm 11; ... (see A345438).
		

References

  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970; Theorem 8.22 on page 295 lists the nine UFDs of the form Q(sqrt(-d)), cf. A003173.

Crossrefs