cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345454 E.g.f.: log(1 - log(1 - x) * exp(x)).

This page as a plain text file.
%I A345454 #38 Jul 19 2021 08:17:20
%S A345454 0,1,2,1,-5,3,141,348,-1938,3013,274327,1583338,-4613476,41135339,
%T A345454 3201505997,33153080054,49123558416,2360520208825,133442956587099,
%U A345454 2109709010976874,14751973018988252,338170133891984663,15120630911878380457,324654726628159335686
%N A345454 E.g.f.: log(1 - log(1 - x) * exp(x)).
%H A345454 <a href="/index/Lo#logarithmic">Index entries for sequences related to logarithmic numbers</a>
%F A345454 a(0) = 0; a(n) = A002104(n) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * A002104(n-k) * k * a(k).
%t A345454 nmax = 23; CoefficientList[Series[Log[1 - Log[1 - x] Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
%t A345454 A002104[n_] := A002104[n] = n! Sum[1/((n - k) k!), {k, 0, n - 1}]; a[0] = 0; a[n_] := a[n] = A002104[n] - (1/n) Sum[Binomial[n, k] A002104[n - k] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
%o A345454 (PARI) my(x='x+O('x^25)); concat(0, Vec(serlaplace(log(1 - log(1 - x) * exp(x))))) \\ _Michel Marcus_, Jul 19 2021
%Y A345454 Cf. A002104, A009321, A009324, A191365, A346427.
%K A345454 sign
%O A345454 0,3
%A A345454 _Ilya Gutkovskiy_, Jul 18 2021