A345459 Number of polygons formed when connecting all 4n points on the perimeter of an n X n square by infinite lines.
0, 4, 80, 568, 2024, 6052, 12144, 26976, 45024, 76724, 116840, 191128, 245976, 388452, 501888, 661476, 870168, 1199724, 1402096, 1911384, 2188320, 2739280, 3371264, 4224288, 4617224, 5801372, 6780568
Offset: 0
Examples
a(2) = 80. Connecting the 8 perimeter points results in the creation of forty-eight 3-gons and eight 4-gons inside the square while creating twenty-four 3-gons outside the square, giving eighty polygons in total. See the linked images.
Links
- Scott R. Shannon, Image for n = 2. In this and other images the square's points are highlighted as white dots while the outer open regions, which are not counted, are darkened. The key for the edge-number coloring is shown at the top-left of the image.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
Crossrefs
Formula
Assuming the square is of size n x n centered on the origin the x (or y) offset for the eight outermost vertices is n^3 - 2*n^2 + 3*n/2, which have a corresponding y (or x) offset of n^2 - 3*n/2 + 1. The total distance from the origin of these vertices is sqrt(n^6 - 4*n^5 + 8*n^4 - 9*n^3 + 13*n^2/2 - 3*n + 1).
Comments