This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345461 #24 Aug 11 2021 09:17:52 %S A345461 1,2,1,6,1,1,24,6,1,1,120,38,7,1,1,720,232,53,7,1,1,5040,1607,404,74, %T A345461 7,1,1,40320,12984,3383,732,108,7,1,1,362880,117513,31572,7043,1292, %U A345461 167,9,1,1,3628800,1182540,324112,75350,14522,2384,260,11,1,1 %N A345461 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) read by rows: number of distinct permutations after k steps of the "optimist" algorithm. %C A345461 Start with the n! permutations of order n. Apply an iteration of the "optimist" sorting algorithm. Count the distinct permutations, until all are sorted. %C A345461 The length of each row is n. %C A345461 The optimist algorithm is: rotate right all currently unsorted letters by the distance between the first unsorted one and its sorted position. An example is given in A345453. %F A345461 T(n,0) = n!; T(n,n-1) = 1; T(n,n-2) = 1 for n > 2. %e A345461 Triangle begins: %e A345461 . %e A345461 1; %e A345461 2, 1; %e A345461 6, 1, 1; %e A345461 24, 6, 1, 1; %e A345461 120, 38, 7, 1, 1; %e A345461 720, 232, 53, 7, 1, 1; %e A345461 5040, 1607, 404, 74, 7, 1, 1; %e A345461 . %Y A345461 Cf. A345453 (permutations according to number of steps for sorting). %Y A345461 Cf. A321352 and A008305 (the equivalent for Eulerian numbers). %Y A345461 Cf. A345462 (the equivalent for Stirling numbers of 1st kind). %Y A345461 Cf. A345464 (first column). %K A345461 tabl,nonn %O A345461 1,2 %A A345461 _Olivier Gérard_, Jun 20 2021