cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345472 Emirps p such that both p and its reversal are sums of three consecutive primes.

This page as a plain text file.
%I A345472 #14 Jun 21 2021 23:31:25
%S A345472 1151,1249,1511,3467,3697,7643,7963,9421,11593,32749,36467,39511,
%T A345472 71329,76463,92317,94723,110119,111109,123707,124309,124823,128377,
%U A345472 141371,146953,150383,155153,160159,164291,167779,173141,178223,184609,190807,192383,192461,199247,304193,304879,306133,322871
%N A345472 Emirps p such that both p and its reversal are sums of three consecutive primes.
%C A345472 Numbers p such that p and its digit reversal are distinct members of A034962.
%H A345472 Robert Israel, <a href="/A345472/b345472.txt">Table of n, a(n) for n = 1..1792</a>
%e A345472 a(4) = 1511 because 1511 and its reversal 1151 are distinct primes, and 1511 = 499+503+509 and 1151 = 379+383+389 are sums of three consecutive primes.
%p A345472 digrev:= proc(n) local L, i;
%p A345472   L:= convert(n, base, 10);
%p A345472   add(L[-i]*10^(i-1), i=1..nops(L))
%p A345472 end proc:P:= select(isprime, [2,seq(i,i=3..nextprime(nextprime(333333)),2)]):
%p A345472 P3:= convert(select(isprime,P[1..-3]+P[2..-2]+P[3..-1]),set):
%p A345472 B:= P3 intersect map(digrev,P3):
%p A345472 sort(convert(remove(t -> digrev(t)=t,B),list);
%Y A345472 Cf. A006567, A034962.
%K A345472 nonn,base
%O A345472 1,1
%A A345472 _J. M. Bergot_ and _Robert Israel_, Jun 20 2021