This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345476 #15 May 10 2024 01:39:59 %S A345476 78,81,84,86,89,92,93,95,99,100,101,102,104,105,107,108,110,111,113, %T A345476 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130, %U A345476 131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148 %N A345476 Numbers that are the sum of six squares in nine or more ways. %H A345476 Sean A. Irvine, <a href="/A345476/b345476.txt">Table of n, a(n) for n = 1..1000</a> %F A345476 Conjectures from _Chai Wah Wu_, Jan 05 2024: (Start) %F A345476 a(n) = 2*a(n-1) - a(n-2) for n > 20. %F A345476 G.f.: x*(-x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - 3*x^9 + 2*x^8 + x^7 - 2*x^6 + x^4 - x^3 - 75*x + 78)/(x - 1)^2. (End) %e A345476 81 = 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 7^2 %e A345476 = 1^2 + 1^2 + 2^2 + 5^2 + 5^2 + 5^2 %e A345476 = 1^2 + 1^2 + 3^2 + 3^2 + 5^2 + 6^2 %e A345476 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 8^2 %e A345476 = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 7^2 %e A345476 = 1^2 + 4^2 + 4^2 + 4^2 + 4^2 + 4^2 %e A345476 = 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 7^2 %e A345476 = 2^2 + 2^2 + 4^2 + 4^2 + 4^2 + 5^2 %e A345476 = 2^2 + 3^2 + 3^2 + 3^2 + 5^2 + 5^2 %e A345476 = 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 6^2 %e A345476 so 81 is a term. %o A345476 (Python) %o A345476 from itertools import combinations_with_replacement as cwr %o A345476 from collections import defaultdict %o A345476 keep = defaultdict(lambda: 0) %o A345476 power_terms = [x**2 for x in range(1, 1000)] %o A345476 for pos in cwr(power_terms, 6): %o A345476 tot = sum(pos) %o A345476 keep[tot] += 1 %o A345476 rets = sorted([k for k, v in keep.items() if v >= 9]) %o A345476 for x in range(len(rets)): %o A345476 print(rets[x]) %Y A345476 Cf. A344802, A344812, A345477, A345486, A345518. %K A345476 nonn %O A345476 1,1 %A A345476 _David Consiglio, Jr._, Jun 20 2021