cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345477 Numbers that are the sum of six squares in ten or more ways.

This page as a plain text file.
%I A345477 #19 May 10 2024 01:39:37
%S A345477 81,84,86,89,92,93,95,100,101,102,104,105,107,108,110,111,113,114,116,
%T A345477 117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,
%U A345477 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150
%N A345477 Numbers that are the sum of six squares in ten or more ways.
%H A345477 David A. Corneth, <a href="/A345477/b345477.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Sean A. Irvine)
%F A345477 Conjectures from _Chai Wah Wu_, Jan 05 2024: (Start)
%F A345477 a(n) = 2*a(n-1) - a(n-2) for n > 20.
%F A345477 G.f.: x*(-x^19 + x^18 - x^17 + x^16 - x^15 + x^14 - x^13 + x^12 - x^11 + x^10 - 4*x^8 + 3*x^7 + x^6 - 2*x^5 + x^3 - x^2 - 78*x + 81)/(x - 1)^2. (End)
%e A345477 84 = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 8^2
%e A345477    = 1^2 + 1^2 + 1^2 + 3^2 + 6^2 + 6^2
%e A345477    = 1^2 + 1^2 + 1^2 + 4^2 + 4^2 + 7^2
%e A345477    = 1^2 + 1^2 + 2^2 + 2^2 + 5^2 + 7^2
%e A345477    = 1^2 + 1^2 + 4^2 + 4^2 + 5^2 + 5^2
%e A345477    = 1^2 + 2^2 + 2^2 + 5^2 + 5^2 + 5^2
%e A345477    = 1^2 + 2^2 + 3^2 + 3^2 + 5^2 + 6^2
%e A345477    = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 8^2
%e A345477    = 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 7^2
%e A345477    = 2^2 + 4^2 + 4^2 + 4^2 + 4^2 + 4^2
%e A345477    = 3^2 + 3^2 + 3^2 + 4^2 + 4^2 + 5^2
%e A345477 so 84 is a term.
%o A345477 (Python)
%o A345477 from itertools import combinations_with_replacement as cwr
%o A345477 from collections import defaultdict
%o A345477 keep = defaultdict(lambda: 0)
%o A345477 power_terms = [x**2 for x in range(1, 1000)]
%o A345477 for pos in cwr(power_terms, 6):
%o A345477     tot = sum(pos)
%o A345477     keep[tot] += 1
%o A345477     rets = sorted([k for k, v in keep.items() if v >= 10])
%o A345477     for x in range(len(rets)):
%o A345477         print(rets[x])
%Y A345477 Cf. A025430, A344803, A345476, A345487, A345519.
%K A345477 nonn
%O A345477 1,1
%A A345477 _David Consiglio, Jr._, Jun 20 2021