cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345478 Numbers that are the sum of seven squares in one or more ways.

This page as a plain text file.
%I A345478 #13 Jun 12 2025 13:38:30
%S A345478 7,10,13,15,16,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
%T A345478 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
%U A345478 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78
%N A345478 Numbers that are the sum of seven squares in one or more ways.
%H A345478 Sean A. Irvine, <a href="/A345478/b345478.txt">Table of n, a(n) for n = 1..1000</a>
%H A345478 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A345478 From _Chai Wah Wu_, Jun 12 2025: (Start)
%F A345478 All integers >= 21 are terms. See A345508 for a similar proof.
%F A345478 a(n) = 2*a(n-1) - a(n-2) for n > 9.
%F A345478 G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 4*x + 7)/(x - 1)^2. (End)
%e A345478 10 is a term because 10 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2.
%t A345478 ssQ[n_]:=Count[IntegerPartitions[n,{7}],_?(AllTrue[Sqrt[#],IntegerQ]&)]>0; Select[ Range[ 80],ssQ] (* _Harvey P. Dale_, Jun 22 2022 *)
%o A345478 (Python)
%o A345478 from itertools import combinations_with_replacement as cwr
%o A345478 from collections import defaultdict
%o A345478 keep = defaultdict(lambda: 0)
%o A345478 power_terms = [x**2 for x in range(1, 1000)]
%o A345478 for pos in cwr(power_terms, 7):
%o A345478     tot = sum(pos)
%o A345478     keep[tot] += 1
%o A345478     rets = sorted([k for k, v in keep.items() if v >= 1])
%o A345478     for x in range(len(rets)):
%o A345478         print(rets[x])
%Y A345478 Cf. A003330, A344805, A345479, A345488, A345508.
%K A345478 nonn
%O A345478 1,1
%A A345478 _David Consiglio, Jr._, Jun 19 2021