This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345481 #10 May 10 2024 01:37:45 %S A345481 37,40,42,45,46,48,49,50,52,53,54,55,57,58,60,61,62,63,64,65,66,67,69, %T A345481 70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92, %U A345481 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108 %N A345481 Numbers that are the sum of seven squares in four or more ways. %H A345481 Sean A. Irvine, <a href="/A345481/b345481.txt">Table of n, a(n) for n = 1..1000</a> %e A345481 40 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2 %e A345481 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 5^2 %e A345481 = 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 %e A345481 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 %e A345481 so 40 is a term. %o A345481 (Python) %o A345481 from itertools import combinations_with_replacement as cwr %o A345481 from collections import defaultdict %o A345481 keep = defaultdict(lambda: 0) %o A345481 power_terms = [x**2 for x in range(1, 1000)] %o A345481 for pos in cwr(power_terms, 7): %o A345481 tot = sum(pos) %o A345481 keep[tot] += 1 %o A345481 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345481 for x in range(len(rets)): %o A345481 print(rets[x]) %Y A345481 Cf. A344808, A345480, A345482, A345491, A345522. %K A345481 nonn %O A345481 1,1 %A A345481 _David Consiglio, Jr._, Jun 20 2021