This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345483 #9 Apr 26 2024 03:20:36 %S A345483 55,58,61,63,64,66,67,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84, %T A345483 85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105, %U A345483 106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 %N A345483 Numbers that are the sum of seven squares in six or more ways. %H A345483 Sean A. Irvine, <a href="/A345483/b345483.txt">Table of n, a(n) for n = 1..1000</a> %F A345483 Conjectures from _Chai Wah Wu_, Apr 25 2024: (Start) %F A345483 a(n) = 2*a(n-1) - a(n-2) for n > 9. %F A345483 G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 52*x + 55)/(x - 1)^2. (End) %e A345483 58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 = 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2. %o A345483 (Python) %o A345483 from itertools import combinations_with_replacement as cwr %o A345483 from collections import defaultdict %o A345483 keep = defaultdict(lambda: 0) %o A345483 power_terms = [x**2 for x in range(1, 1000)] %o A345483 for pos in cwr(power_terms, 7): %o A345483 tot = sum(pos) %o A345483 keep[tot] += 1 %o A345483 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345483 for x in range(len(rets)): %o A345483 print(rets[x]) %Y A345483 Cf. A344810, A345482, A345484, A345493, A345524. %K A345483 nonn %O A345483 1,1 %A A345483 _David Consiglio, Jr._, Jun 20 2021