cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345484 Numbers that are the sum of seven squares in seven or more ways.

This page as a plain text file.
%I A345484 #10 Apr 26 2024 05:48:49
%S A345484 55,58,61,63,64,66,69,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,
%T A345484 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,
%U A345484 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123
%N A345484 Numbers that are the sum of seven squares in seven or more ways.
%H A345484 Sean A. Irvine, <a href="/A345484/b345484.txt">Table of n, a(n) for n = 1..1000</a>
%F A345484 Conjectures from _Chai Wah Wu_, Apr 25 2024: (Start)
%F A345484 a(n) = 2*a(n-1) - a(n-2) for n > 21.
%F A345484 G.f.: x*(-x^20 + x^19 - x^9 + x^8 - 2*x^7 + x^6 + x^5 - x^4 - x^3 - 52*x + 55)/(x - 1)^2. (End)
%e A345484 58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 = 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2.
%o A345484 (Python)
%o A345484 from itertools import combinations_with_replacement as cwr
%o A345484 from collections import defaultdict
%o A345484 keep = defaultdict(lambda: 0)
%o A345484 power_terms = [x**2 for x in range(1, 1000)]
%o A345484 for pos in cwr(power_terms, 7):
%o A345484     tot = sum(pos)
%o A345484     keep[tot] += 1
%o A345484     rets = sorted([k for k, v in keep.items() if v >= 7])
%o A345484     for x in range(len(rets)):
%o A345484         print(rets[x])
%Y A345484 Cf. A344811, A345483, A345485, A345494, A345525.
%K A345484 nonn
%O A345484 1,1
%A A345484 _David Consiglio, Jr._, Jun 20 2021