cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345485 Numbers that are the sum of seven squares in eight or more ways.

This page as a plain text file.
%I A345485 #6 Aug 05 2021 07:21:39
%S A345485 61,66,69,70,72,73,76,77,78,79,81,82,84,85,86,87,88,90,91,92,93,94,95,
%T A345485 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,
%U A345485 114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129
%N A345485 Numbers that are the sum of seven squares in eight or more ways.
%H A345485 Sean A. Irvine, <a href="/A345485/b345485.txt">Table of n, a(n) for n = 1..1000</a>
%e A345485 66 is a term because 66 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 5^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 7^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 6^2 = 1^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 + 4^2 = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 5^2 = 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 5^2.
%o A345485 (Python)
%o A345485 from itertools import combinations_with_replacement as cwr
%o A345485 from collections import defaultdict
%o A345485 keep = defaultdict(lambda: 0)
%o A345485 power_terms = [x**2 for x in range(1, 1000)]
%o A345485 for pos in cwr(power_terms, 7):
%o A345485     tot = sum(pos)
%o A345485     keep[tot] += 1
%o A345485     rets = sorted([k for k, v in keep.items() if v >= 8])
%o A345485     for x in range(len(rets)):
%o A345485         print(rets[x])
%Y A345485 Cf. A344812, A345484, A345486, A345495, A345526.
%K A345485 nonn
%O A345485 1,1
%A A345485 _David Consiglio, Jr._, Jun 20 2021