cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345488 Numbers that are the sum of eight squares in one or more ways.

This page as a plain text file.
%I A345488 #11 Jun 12 2025 13:37:46
%S A345488 8,11,14,16,17,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
%T A345488 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
%U A345488 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79
%N A345488 Numbers that are the sum of eight squares in one or more ways.
%H A345488 Sean A. Irvine, <a href="/A345488/b345488.txt">Table of n, a(n) for n = 1..1000</a>
%H A345488 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A345488 From _Chai Wah Wu_, Jun 12 2025: (Start)
%F A345488 All integers >= 22 are terms. See A345508 for a similar proof.
%F A345488 a(n) = 2*a(n-1) - a(n-2) for n > 9.
%F A345488 G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 5*x + 8)/(x - 1)^2. (End)
%e A345488 11 is a term because 11 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2.
%o A345488 (Python)
%o A345488 from itertools import combinations_with_replacement as cwr
%o A345488 from collections import defaultdict
%o A345488 keep = defaultdict(lambda: 0)
%o A345488 power_terms = [x**2 for x in range(1, 1000)]
%o A345488 for pos in cwr(power_terms, 8):
%o A345488     tot = sum(pos)
%o A345488     keep[tot] += 1
%o A345488     rets = sorted([k for k, v in keep.items() if v >= 1])
%o A345488     for x in range(len(rets)):
%o A345488         print(rets[x])
%Y A345488 Cf. A003331, A345478, A345489, A345498, A345508.
%K A345488 nonn
%O A345488 1,1
%A A345488 _David Consiglio, Jr._, Jun 19 2021