This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345493 #9 Apr 26 2024 03:20:16 %S A345493 56,58,59,61,62,64,65,67,68,70,71,72,73,74,75,76,77,78,79,80,81,82,83, %T A345493 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104, %U A345493 105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120 %N A345493 Numbers that are the sum of eight squares in six or more ways. %H A345493 Sean A. Irvine, <a href="/A345493/b345493.txt">Table of n, a(n) for n = 1..1000</a> %F A345493 Conjectures from _Chai Wah Wu_, Apr 25 2024: (Start) %F A345493 a(n) = 2*a(n-1) - a(n-2) for n > 11. %F A345493 G.f.: x*(-x^10 + x^9 - x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - x^2 - 54*x + 56)/(x - 1)^2. (End) %e A345493 58 is a term because 58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 5^2. %o A345493 (Python) %o A345493 from itertools import combinations_with_replacement as cwr %o A345493 from collections import defaultdict %o A345493 keep = defaultdict(lambda: 0) %o A345493 power_terms = [x**2 for x in range(1, 1000)] %o A345493 for pos in cwr(power_terms, 8): %o A345493 tot = sum(pos) %o A345493 keep[tot] += 1 %o A345493 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345493 for x in range(len(rets)): %o A345493 print(rets[x]) %Y A345493 Cf. A345483, A345492, A345494, A345503, A345536. %K A345493 nonn %O A345493 1,1 %A A345493 _David Consiglio, Jr._, Jun 20 2021