cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345497 Numbers that are the sum of eight squares in ten or more ways.

This page as a plain text file.
%I A345497 #12 May 10 2024 08:51:47
%S A345497 70,71,73,74,77,78,79,80,82,83,85,86,87,88,89,90,91,92,93,94,95,96,97,
%T A345497 98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,
%U A345497 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131
%N A345497 Numbers that are the sum of eight squares in ten or more ways.
%H A345497 Sean A. Irvine, <a href="/A345497/b345497.txt">Table of n, a(n) for n = 1..1000</a>
%H A345497 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A345497 From _Chai Wah Wu_, May 09 2024: (Start)
%F A345497 All integers >= 85 are terms. Proof: since 594 can be written as the sum of 3 positive squares in 10 ways (see A025427) and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 628 can be written as a sum of 8 positive squares in 10 or more ways. Integers from 85 to 627 are terms by inspection.
%F A345497 a(n) = 2*a(n-1) - a(n-2) for n > 12.
%F A345497 G.f.: x*(-x^11 + x^10 - x^9 + x^8 - 2*x^5 + 2*x^4 - x^3 + x^2 - 69*x + 70)/(x - 1)^2. (End)
%e A345497 71 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 8^2
%e A345497    = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2
%e A345497    = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 + 5^2
%e A345497    = 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2 + 4^2 + 4^2
%e A345497    = 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 5^2
%e A345497    = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 7^2
%e A345497    = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 5^2
%e A345497    = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 + 5^2
%e A345497    = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 6^2
%e A345497    = 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2
%e A345497    = 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2 + 4^2
%e A345497 so 71 is a term.
%o A345497 (Python)
%o A345497 from itertools import combinations_with_replacement as cwr
%o A345497 from collections import defaultdict
%o A345497 keep = defaultdict(lambda: 0)
%o A345497 power_terms = [x**2 for x in range(1, 1000)]
%o A345497 for pos in cwr(power_terms, 8):
%o A345497     tot = sum(pos)
%o A345497     keep[tot] += 1
%o A345497     rets = sorted([k for k, v in keep.items() if v >= 10])
%o A345497     for x in range(len(rets)):
%o A345497         print(rets[x])
%o A345497 (Python)
%o A345497 def A345397(n): return (70, 71, 73, 74, 77, 78, 79, 80, 82, 83)[n-1] if n<11 else n+74 # _Chai Wah Wu_, May 09 2024
%Y A345497 Cf. A025427, A025429, A345487, A345496, A345540, A346803.
%K A345497 nonn
%O A345497 1,1
%A A345497 _David Consiglio, Jr._, Jun 20 2021