cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345506 Numbers that are the sum of seven cubes in ten or more ways.

This page as a plain text file.
%I A345506 #6 Aug 05 2021 15:22:12
%S A345506 1704,1711,1774,1800,1837,1863,1889,1893,1926,1938,1963,1982,1989,
%T A345506 2008,2015,2019,2045,2052,2053,2059,2078,2097,2106,2113,2143,2161,
%U A345506 2169,2171,2176,2197,2204,2217,2223,2224,2227,2230,2234,2241,2250,2260,2266,2267,2276
%N A345506 Numbers that are the sum of seven cubes in ten or more ways.
%H A345506 Sean A. Irvine, <a href="/A345506/b345506.txt">Table of n, a(n) for n = 1..10000</a>
%e A345506 1711 is a term because 1711 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
%o A345506 (Python)
%o A345506 from itertools import combinations_with_replacement as cwr
%o A345506 from collections import defaultdict
%o A345506 keep = defaultdict(lambda: 0)
%o A345506 power_terms = [x**3 for x in range(1, 1000)]
%o A345506 for pos in cwr(power_terms, 7):
%o A345506     tot = sum(pos)
%o A345506     keep[tot] += 1
%o A345506     rets = sorted([k for k, v in keep.items() if v >= 10])
%o A345506     for x in range(len(rets)):
%o A345506         print(rets[x])
%Y A345506 Cf. A345487, A345519, A345527, A345540, A345576, A345782.
%K A345506 nonn
%O A345506 1,1
%A A345506 _David Consiglio, Jr._, Jun 20 2021