cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345508 Numbers that are the sum of ten squares in one or more ways.

This page as a plain text file.
%I A345508 #17 May 10 2024 08:52:11
%S A345508 10,13,16,18,19,21,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,
%T A345508 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,
%U A345508 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81
%N A345508 Numbers that are the sum of ten squares in one or more ways.
%H A345508 Sean A. Irvine, <a href="/A345508/b345508.txt">Table of n, a(n) for n = 1..1000</a>
%H A345508 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A345508 From _Chai Wah Wu_, May 09 2024: (Start)
%F A345508 All integers >= 24 are terms. Proof: since 5 can be written as the sum of 5 positive squares and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 39 can be written as a sum of 10 positive squares. Integers from 24 to 38 are terms by inspection.
%F A345508 a(n) = 2*a(n-1) - a(n-2) for n > 9.
%F A345508 G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 7*x + 10)/(x - 1)^2. (End)
%e A345508 13 is a term because 13 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2.
%o A345508 (Python)
%o A345508 from itertools import combinations_with_replacement as cwr
%o A345508 from collections import defaultdict
%o A345508 keep = defaultdict(lambda: 0)
%o A345508 power_terms = [x**2 for x in range(1, 1000)]
%o A345508 for pos in cwr(power_terms, 10):
%o A345508     tot = sum(pos)
%o A345508     keep[tot] += 1
%o A345508     rets = sorted([k for k, v in keep.items() if v >= 1])
%o A345508     for x in range(len(rets)):
%o A345508         print(rets[x])
%o A345508 (Python)
%o A345508 def A345508(n): return (10, 13, 16, 18, 19, 21, 22)[n-1] if n<8 else n+16 # _Chai Wah Wu_, May 09 2024
%Y A345508 Cf. A003333, A025429, A345498, A345509.
%K A345508 nonn
%O A345508 1,1
%A A345508 _David Consiglio, Jr._, Jun 19 2021