cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345509 Numbers that are the sum of ten squares in two or more ways.

This page as a plain text file.
%I A345509 #12 May 10 2024 08:51:51
%S A345509 25,28,31,33,34,36,37,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,
%T A345509 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,
%U A345509 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96
%N A345509 Numbers that are the sum of ten squares in two or more ways.
%H A345509 Sean A. Irvine, <a href="/A345509/b345509.txt">Table of n, a(n) for n = 1..1000</a>
%H A345509 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A345509 From _Chai Wah Wu_, May 09 2024: (Start)
%F A345509 All integers >= 39 are terms. Proof: since 20 can be written as the sum of 5 positive squares in 2 ways and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 54 can be written as a sum of 10 positive squares in 2 or more ways. Integers from 39 to 53 are terms by inspection.
%F A345509 a(n) = 2*a(n-1) - a(n-2) for n > 9.
%F A345509 G.f.: x*(-x^8 + x^7 - x^6 + x^5 - x^4 - x^3 - 22*x + 25)/(x - 1)^2. (End)
%e A345509 28 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2
%e A345509    = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2
%e A345509 so 28 is a term.
%o A345509 (Python)
%o A345509 from itertools import combinations_with_replacement as cwr
%o A345509 from collections import defaultdict
%o A345509 keep = defaultdict(lambda: 0)
%o A345509 power_terms = [x**2 for x in range(1, 1000)]
%o A345509 for pos in cwr(power_terms, 10):
%o A345509     tot = sum(pos)
%o A345509     keep[tot] += 1
%o A345509     rets = sorted([k for k, v in keep.items() if v >= 2])
%o A345509     for x in range(len(rets)):
%o A345509         print(rets[x])
%o A345509 (Python)
%o A345509 def A345509(n): return (25, 28, 31, 33, 34, 36, 37)[n-1] if n<8 else n+31 # _Chai Wah Wu_, May 09 2024
%Y A345509 Cf. A025429, A345499, A345508, A345510, A345550.
%K A345509 nonn
%O A345509 1,1
%A A345509 _David Consiglio, Jr._, Jun 20 2021