cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345514 Numbers that are the sum of six cubes in five or more ways.

This page as a plain text file.
%I A345514 #6 Aug 05 2021 15:23:56
%S A345514 1045,1169,1241,1260,1377,1384,1432,1440,1488,1495,1530,1539,1549,
%T A345514 1556,1558,1584,1586,1594,1595,1602,1612,1617,1640,1647,1654,1657,
%U A345514 1673,1675,1677,1703,1710,1712,1715,1719,1729,1736,1738,1745,1747,1754,1764,1766,1771
%N A345514 Numbers that are the sum of six cubes in five or more ways.
%H A345514 Sean A. Irvine, <a href="/A345514/b345514.txt">Table of n, a(n) for n = 1..10000</a>
%e A345514 1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3.
%o A345514 (Python)
%o A345514 from itertools import combinations_with_replacement as cwr
%o A345514 from collections import defaultdict
%o A345514 keep = defaultdict(lambda: 0)
%o A345514 power_terms = [x**3 for x in range(1, 1000)]
%o A345514 for pos in cwr(power_terms, 6):
%o A345514     tot = sum(pos)
%o A345514     keep[tot] += 1
%o A345514     rets = sorted([k for k, v in keep.items() if v >= 5])
%o A345514     for x in range(len(rets)):
%o A345514         print(rets[x])
%Y A345514 Cf. A343989, A344809, A345513, A345515, A345523, A345562, A345767.
%K A345514 nonn
%O A345514 1,1
%A A345514 _David Consiglio, Jr._, Jun 20 2021