This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345514 #6 Aug 05 2021 15:23:56 %S A345514 1045,1169,1241,1260,1377,1384,1432,1440,1488,1495,1530,1539,1549, %T A345514 1556,1558,1584,1586,1594,1595,1602,1612,1617,1640,1647,1654,1657, %U A345514 1673,1675,1677,1703,1710,1712,1715,1719,1729,1736,1738,1745,1747,1754,1764,1766,1771 %N A345514 Numbers that are the sum of six cubes in five or more ways. %H A345514 Sean A. Irvine, <a href="/A345514/b345514.txt">Table of n, a(n) for n = 1..10000</a> %e A345514 1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3. %o A345514 (Python) %o A345514 from itertools import combinations_with_replacement as cwr %o A345514 from collections import defaultdict %o A345514 keep = defaultdict(lambda: 0) %o A345514 power_terms = [x**3 for x in range(1, 1000)] %o A345514 for pos in cwr(power_terms, 6): %o A345514 tot = sum(pos) %o A345514 keep[tot] += 1 %o A345514 rets = sorted([k for k, v in keep.items() if v >= 5]) %o A345514 for x in range(len(rets)): %o A345514 print(rets[x]) %Y A345514 Cf. A343989, A344809, A345513, A345515, A345523, A345562, A345767. %K A345514 nonn %O A345514 1,1 %A A345514 _David Consiglio, Jr._, Jun 20 2021