cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345515 Numbers that are the sum of six cubes in six or more ways.

This page as a plain text file.
%I A345515 #6 Aug 05 2021 15:24:00
%S A345515 1377,1488,1586,1595,1647,1673,1677,1710,1738,1764,1766,1773,1799,
%T A345515 1829,1836,1837,1862,1881,1890,1911,1953,1955,1981,1988,2007,2011,
%U A345515 2014,2018,2025,2044,2051,2070,2079,2097,2105,2107,2108,2142,2153,2160,2168,2170,2177
%N A345515 Numbers that are the sum of six cubes in six or more ways.
%H A345515 Sean A. Irvine, <a href="/A345515/b345515.txt">Table of n, a(n) for n = 1..10000</a>
%e A345515 1488 is a term because 1488 = 1^3 + 1^3 + 1^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
%o A345515 (Python)
%o A345515 from itertools import combinations_with_replacement as cwr
%o A345515 from collections import defaultdict
%o A345515 keep = defaultdict(lambda: 0)
%o A345515 power_terms = [x**3 for x in range(1, 1000)]
%o A345515 for pos in cwr(power_terms, 6):
%o A345515     tot = sum(pos)
%o A345515     keep[tot] += 1
%o A345515     rets = sorted([k for k, v in keep.items() if v >= 6])
%o A345515     for x in range(len(rets)):
%o A345515         print(rets[x])
%Y A345515 Cf. A344810, A345174, A345514, A345516, A345524, A345563, A345768.
%K A345515 nonn
%O A345515 1,1
%A A345515 _David Consiglio, Jr._, Jun 20 2021