This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345515 #6 Aug 05 2021 15:24:00 %S A345515 1377,1488,1586,1595,1647,1673,1677,1710,1738,1764,1766,1773,1799, %T A345515 1829,1836,1837,1862,1881,1890,1911,1953,1955,1981,1988,2007,2011, %U A345515 2014,2018,2025,2044,2051,2070,2079,2097,2105,2107,2108,2142,2153,2160,2168,2170,2177 %N A345515 Numbers that are the sum of six cubes in six or more ways. %H A345515 Sean A. Irvine, <a href="/A345515/b345515.txt">Table of n, a(n) for n = 1..10000</a> %e A345515 1488 is a term because 1488 = 1^3 + 1^3 + 1^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3. %o A345515 (Python) %o A345515 from itertools import combinations_with_replacement as cwr %o A345515 from collections import defaultdict %o A345515 keep = defaultdict(lambda: 0) %o A345515 power_terms = [x**3 for x in range(1, 1000)] %o A345515 for pos in cwr(power_terms, 6): %o A345515 tot = sum(pos) %o A345515 keep[tot] += 1 %o A345515 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345515 for x in range(len(rets)): %o A345515 print(rets[x]) %Y A345515 Cf. A344810, A345174, A345514, A345516, A345524, A345563, A345768. %K A345515 nonn %O A345515 1,1 %A A345515 _David Consiglio, Jr._, Jun 20 2021