This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345516 #6 Aug 05 2021 15:24:03 %S A345516 1710,1766,1773,1981,1988,2051,2105,2160,2168,2196,2249,2251,2259, %T A345516 2277,2314,2322,2349,2368,2375,2376,2417,2424,2431,2438,2457,2466, %U A345516 2480,2492,2494,2513,2520,2531,2538,2539,2548,2555,2557,2564,2565,2574,2583,2593,2611 %N A345516 Numbers that are the sum of six cubes in seven or more ways. %H A345516 Sean A. Irvine, <a href="/A345516/b345516.txt">Table of n, a(n) for n = 1..10000</a> %e A345516 1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3. %o A345516 (Python) %o A345516 from itertools import combinations_with_replacement as cwr %o A345516 from collections import defaultdict %o A345516 keep = defaultdict(lambda: 0) %o A345516 power_terms = [x**3 for x in range(1, 1000)] %o A345516 for pos in cwr(power_terms, 6): %o A345516 tot = sum(pos) %o A345516 keep[tot] += 1 %o A345516 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A345516 for x in range(len(rets)): %o A345516 print(rets[x]) %Y A345516 Cf. A344811, A345180, A345515, A345517, A345525, A345564, A345769. %K A345516 nonn %O A345516 1,1 %A A345516 _David Consiglio, Jr._, Jun 20 2021