This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345517 #6 Aug 05 2021 15:24:07 %S A345517 1981,2105,2168,2277,2368,2376,2431,2438,2457,2466,2494,2538,2555, %T A345517 2557,2583,2593,2646,2665,2672,2709,2746,2753,2763,2765,2772,2880, %U A345517 2881,2889,2916,2942,2961,2970,2977,2979,2980,2987,3007,3033,3040,3042,3043,3049,3068 %N A345517 Numbers that are the sum of six cubes in eight or more ways. %H A345517 Sean A. Irvine, <a href="/A345517/b345517.txt">Table of n, a(n) for n = 1..10000</a> %e A345517 2105 is a term because 2105 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 11^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 11^3 = 1^3 + 2^3 + 6^3 + 7^3 + 7^3 + 8^3 = 1^3 + 4^3 + 4^3 + 4^3 + 8^3 + 9^3 = 1^3 + 4^3 + 5^3 + 5^3 + 5^3 + 10^3 = 2^3 + 3^3 + 4^3 + 5^3 + 8^3 + 9^3 = 3^3 + 3^3 + 3^3 + 7^3 + 7^3 + 9^3 = 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 8^3. %o A345517 (Python) %o A345517 from itertools import combinations_with_replacement as cwr %o A345517 from collections import defaultdict %o A345517 keep = defaultdict(lambda: 0) %o A345517 power_terms = [x**3 for x in range(1, 1000)] %o A345517 for pos in cwr(power_terms, 6): %o A345517 tot = sum(pos) %o A345517 keep[tot] += 1 %o A345517 rets = sorted([k for k, v in keep.items() if v >= 8]) %o A345517 for x in range(len(rets)): %o A345517 print(rets[x]) %Y A345517 Cf. A344812, A345183, A345516, A345518, A345526, A345565, A345770. %K A345517 nonn %O A345517 1,1 %A A345517 _David Consiglio, Jr._, Jun 20 2021