cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345517 Numbers that are the sum of six cubes in eight or more ways.

This page as a plain text file.
%I A345517 #6 Aug 05 2021 15:24:07
%S A345517 1981,2105,2168,2277,2368,2376,2431,2438,2457,2466,2494,2538,2555,
%T A345517 2557,2583,2593,2646,2665,2672,2709,2746,2753,2763,2765,2772,2880,
%U A345517 2881,2889,2916,2942,2961,2970,2977,2979,2980,2987,3007,3033,3040,3042,3043,3049,3068
%N A345517 Numbers that are the sum of six cubes in eight or more ways.
%H A345517 Sean A. Irvine, <a href="/A345517/b345517.txt">Table of n, a(n) for n = 1..10000</a>
%e A345517 2105 is a term because 2105 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 11^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 11^3 = 1^3 + 2^3 + 6^3 + 7^3 + 7^3 + 8^3 = 1^3 + 4^3 + 4^3 + 4^3 + 8^3 + 9^3 = 1^3 + 4^3 + 5^3 + 5^3 + 5^3 + 10^3 = 2^3 + 3^3 + 4^3 + 5^3 + 8^3 + 9^3 = 3^3 + 3^3 + 3^3 + 7^3 + 7^3 + 9^3 = 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 8^3.
%o A345517 (Python)
%o A345517 from itertools import combinations_with_replacement as cwr
%o A345517 from collections import defaultdict
%o A345517 keep = defaultdict(lambda: 0)
%o A345517 power_terms = [x**3 for x in range(1, 1000)]
%o A345517 for pos in cwr(power_terms, 6):
%o A345517     tot = sum(pos)
%o A345517     keep[tot] += 1
%o A345517     rets = sorted([k for k, v in keep.items() if v >= 8])
%o A345517     for x in range(len(rets)):
%o A345517         print(rets[x])
%Y A345517 Cf. A344812, A345183, A345516, A345518, A345526, A345565, A345770.
%K A345517 nonn
%O A345517 1,1
%A A345517 _David Consiglio, Jr._, Jun 20 2021