This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345518 #6 Aug 05 2021 15:24:11 %S A345518 2438,2457,2494,2555,2593,2709,2772,2889,2942,2980,3033,3043,3096, %T A345518 3104,3160,3195,3215,3222,3241,3250,3257,3267,3276,3313,3339,3374, %U A345518 3402,3427,3430,3437,3465,3467,3491,3493,3528,3547,3556,3582,3584,3592,3608,3609,3617 %N A345518 Numbers that are the sum of six cubes in nine or more ways. %H A345518 Sean A. Irvine, <a href="/A345518/b345518.txt">Table of n, a(n) for n = 1..10000</a> %e A345518 2457 is a term because 2457 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 12^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 12^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 11^3 = 1^3 + 5^3 + 5^3 + 7^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 11^3 = 2^3 + 3^3 + 3^3 + 3^3 + 9^3 + 10^3 = 2^3 + 5^3 + 5^3 + 6^3 + 6^3 + 10^3 = 3^3 + 3^3 + 5^3 + 8^3 + 8^3 + 8^3 = 3^3 + 3^3 + 4^3 + 7^3 + 8^3 + 9^3. %o A345518 (Python) %o A345518 from itertools import combinations_with_replacement as cwr %o A345518 from collections import defaultdict %o A345518 keep = defaultdict(lambda: 0) %o A345518 power_terms = [x**3 for x in range(1, 1000)] %o A345518 for pos in cwr(power_terms, 6): %o A345518 tot = sum(pos) %o A345518 keep[tot] += 1 %o A345518 rets = sorted([k for k, v in keep.items() if v >= 9]) %o A345518 for x in range(len(rets)): %o A345518 print(rets[x]) %Y A345518 Cf. A345185, A345476, A345517, A345519, A345527, A345566, A345771. %K A345518 nonn %O A345518 1,1 %A A345518 _David Consiglio, Jr._, Jun 20 2021