cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345518 Numbers that are the sum of six cubes in nine or more ways.

This page as a plain text file.
%I A345518 #6 Aug 05 2021 15:24:11
%S A345518 2438,2457,2494,2555,2593,2709,2772,2889,2942,2980,3033,3043,3096,
%T A345518 3104,3160,3195,3215,3222,3241,3250,3257,3267,3276,3313,3339,3374,
%U A345518 3402,3427,3430,3437,3465,3467,3491,3493,3528,3547,3556,3582,3584,3592,3608,3609,3617
%N A345518 Numbers that are the sum of six cubes in nine or more ways.
%H A345518 Sean A. Irvine, <a href="/A345518/b345518.txt">Table of n, a(n) for n = 1..10000</a>
%e A345518 2457 is a term because 2457 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 12^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 12^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 11^3 = 1^3 + 5^3 + 5^3 + 7^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 11^3 = 2^3 + 3^3 + 3^3 + 3^3 + 9^3 + 10^3 = 2^3 + 5^3 + 5^3 + 6^3 + 6^3 + 10^3 = 3^3 + 3^3 + 5^3 + 8^3 + 8^3 + 8^3 = 3^3 + 3^3 + 4^3 + 7^3 + 8^3 + 9^3.
%o A345518 (Python)
%o A345518 from itertools import combinations_with_replacement as cwr
%o A345518 from collections import defaultdict
%o A345518 keep = defaultdict(lambda: 0)
%o A345518 power_terms = [x**3 for x in range(1, 1000)]
%o A345518 for pos in cwr(power_terms, 6):
%o A345518     tot = sum(pos)
%o A345518     keep[tot] += 1
%o A345518     rets = sorted([k for k, v in keep.items() if v >= 9])
%o A345518     for x in range(len(rets)):
%o A345518         print(rets[x])
%Y A345518 Cf. A345185, A345476, A345517, A345519, A345527, A345566, A345771.
%K A345518 nonn
%O A345518 1,1
%A A345518 _David Consiglio, Jr._, Jun 20 2021