cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345522 Numbers that are the sum of seven cubes in four or more ways.

This page as a plain text file.
%I A345522 #7 Aug 05 2021 15:22:21
%S A345522 470,496,503,603,627,634,653,659,685,690,692,711,712,747,751,754,761,
%T A345522 766,768,773,775,777,780,783,787,792,794,812,813,829,831,836,838,842,
%U A345522 843,845,857,859,864,867,871,874,875,881,883,885,890,892,894,899,900,901
%N A345522 Numbers that are the sum of seven cubes in four or more ways.
%H A345522 Sean A. Irvine, <a href="/A345522/b345522.txt">Table of n, a(n) for n = 1..10000</a>
%e A345522 496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
%o A345522 (Python)
%o A345522 from itertools import combinations_with_replacement as cwr
%o A345522 from collections import defaultdict
%o A345522 keep = defaultdict(lambda: 0)
%o A345522 power_terms = [x**3 for x in range(1, 1000)]
%o A345522 for pos in cwr(power_terms, 7):
%o A345522     tot = sum(pos)
%o A345522     keep[tot] += 1
%o A345522     rets = sorted([k for k, v in keep.items() if v >= 4])
%o A345522     for x in range(len(rets)):
%o A345522         print(rets[x])
%Y A345522 Cf. A345481, A345513, A345521, A345523, A345534, A345570, A345776.
%K A345522 nonn
%O A345522 1,1
%A A345522 _David Consiglio, Jr._, Jun 20 2021