This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345522 #7 Aug 05 2021 15:22:21 %S A345522 470,496,503,603,627,634,653,659,685,690,692,711,712,747,751,754,761, %T A345522 766,768,773,775,777,780,783,787,792,794,812,813,829,831,836,838,842, %U A345522 843,845,857,859,864,867,871,874,875,881,883,885,890,892,894,899,900,901 %N A345522 Numbers that are the sum of seven cubes in four or more ways. %H A345522 Sean A. Irvine, <a href="/A345522/b345522.txt">Table of n, a(n) for n = 1..10000</a> %e A345522 496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3. %o A345522 (Python) %o A345522 from itertools import combinations_with_replacement as cwr %o A345522 from collections import defaultdict %o A345522 keep = defaultdict(lambda: 0) %o A345522 power_terms = [x**3 for x in range(1, 1000)] %o A345522 for pos in cwr(power_terms, 7): %o A345522 tot = sum(pos) %o A345522 keep[tot] += 1 %o A345522 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345522 for x in range(len(rets)): %o A345522 print(rets[x]) %Y A345522 Cf. A345481, A345513, A345521, A345523, A345534, A345570, A345776. %K A345522 nonn %O A345522 1,1 %A A345522 _David Consiglio, Jr._, Jun 20 2021