cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345523 Numbers that are the sum of seven cubes in five or more ways.

This page as a plain text file.
%I A345523 #7 Aug 05 2021 15:22:25
%S A345523 627,768,838,845,857,864,874,881,894,900,920,937,950,955,962,969,976,
%T A345523 981,983,990,1002,1009,1011,1016,1027,1046,1053,1054,1060,1061,1063,
%U A345523 1072,1079,1089,1096,1098,1102,1105,1107,1109,1115,1117,1121,1124,1128,1133
%N A345523 Numbers that are the sum of seven cubes in five or more ways.
%H A345523 Sean A. Irvine, <a href="/A345523/b345523.txt">Table of n, a(n) for n = 1..10000</a>
%e A345523 768 is a term because 768 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3.
%o A345523 (Python)
%o A345523 from itertools import combinations_with_replacement as cwr
%o A345523 from collections import defaultdict
%o A345523 keep = defaultdict(lambda: 0)
%o A345523 power_terms = [x**3 for x in range(1, 1000)]
%o A345523 for pos in cwr(power_terms, 7):
%o A345523     tot = sum(pos)
%o A345523     keep[tot] += 1
%o A345523     rets = sorted([k for k, v in keep.items() if v >= 5])
%o A345523     for x in range(len(rets)):
%o A345523         print(rets[x])
%Y A345523 Cf. A345482, A345514, A345522, A345524, A345535, A345571, A345777.
%K A345523 nonn
%O A345523 1,1
%A A345523 _David Consiglio, Jr._, Jun 20 2021