This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345524 #7 Aug 05 2021 15:22:28 %S A345524 955,969,1046,1053,1072,1079,1107,1117,1121,1158,1161,1170,1177,1184, %T A345524 1196,1198,1216,1222,1235,1242,1254,1261,1268,1272,1280,1287,1291, %U A345524 1294,1297,1298,1305,1310,1324,1350,1351,1355,1366,1369,1376,1378,1385,1388,1392 %N A345524 Numbers that are the sum of seven cubes in six or more ways. %H A345524 Sean A. Irvine, <a href="/A345524/b345524.txt">Table of n, a(n) for n = 1..10000</a> %e A345524 969 is a term because 969 = 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3. %o A345524 (Python) %o A345524 from itertools import combinations_with_replacement as cwr %o A345524 from collections import defaultdict %o A345524 keep = defaultdict(lambda: 0) %o A345524 power_terms = [x**3 for x in range(1, 1000)] %o A345524 for pos in cwr(power_terms, 7): %o A345524 tot = sum(pos) %o A345524 keep[tot] += 1 %o A345524 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345524 for x in range(len(rets)): %o A345524 print(rets[x]) %Y A345524 Cf. A345483, A345515, A345523, A345525, A345536, A345572, A345778. %K A345524 nonn %O A345524 1,1 %A A345524 _David Consiglio, Jr._, Jun 20 2021