cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345525 Numbers that are the sum of seven cubes in seven or more ways.

This page as a plain text file.
%I A345525 #7 Aug 05 2021 15:22:32
%S A345525 1072,1170,1235,1261,1268,1305,1385,1392,1396,1411,1440,1441,1448,
%T A345525 1450,1459,1489,1496,1502,1504,1513,1515,1538,1540,1547,1552,1557,
%U A345525 1559,1564,1565,1566,1567,1576,1585,1587,1592,1593,1594,1600,1602,1603,1606,1613,1620
%N A345525 Numbers that are the sum of seven cubes in seven or more ways.
%H A345525 Sean A. Irvine, <a href="/A345525/b345525.txt">Table of n, a(n) for n = 1..10000</a>
%e A345525 1170 is a term because 1170 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3 = 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 7^3.
%o A345525 (Python)
%o A345525 from itertools import combinations_with_replacement as cwr
%o A345525 from collections import defaultdict
%o A345525 keep = defaultdict(lambda: 0)
%o A345525 power_terms = [x**3 for x in range(1, 1000)]
%o A345525 for pos in cwr(power_terms, 7):
%o A345525     tot = sum(pos)
%o A345525     keep[tot] += 1
%o A345525     rets = sorted([k for k, v in keep.items() if v >= 7])
%o A345525     for x in range(len(rets)):
%o A345525         print(rets[x])
%Y A345525 Cf. A345484, A345516, A345524, A345526, A345537, A345573, A345779.
%K A345525 nonn
%O A345525 1,1
%A A345525 _David Consiglio, Jr._, Jun 20 2021