This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345526 #7 Aug 05 2021 15:22:35 %S A345526 1385,1496,1515,1552,1557,1585,1587,1603,1613,1622,1648,1655,1665, %T A345526 1674,1681,1704,1711,1718,1719,1720,1737,1739,1741,1746,1753,1755, %U A345526 1765,1767,1772,1774,1781,1782,1793,1800,1802,1805,1809,1811,1818,1819,1826,1828,1830 %N A345526 Numbers that are the sum of seven cubes in eight or more ways. %H A345526 Sean A. Irvine, <a href="/A345526/b345526.txt">Table of n, a(n) for n = 1..10000</a> %e A345526 1496 is a term because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3. %o A345526 (Python) %o A345526 from itertools import combinations_with_replacement as cwr %o A345526 from collections import defaultdict %o A345526 keep = defaultdict(lambda: 0) %o A345526 power_terms = [x**3 for x in range(1, 1000)] %o A345526 for pos in cwr(power_terms, 7): %o A345526 tot = sum(pos) %o A345526 keep[tot] += 1 %o A345526 rets = sorted([k for k, v in keep.items() if v >= 8]) %o A345526 for x in range(len(rets)): %o A345526 print(rets[x]) %Y A345526 Cf. A345485, A345517, A345525, A345527, A345538, A345574, A345780. %K A345526 nonn %O A345526 1,1 %A A345526 _David Consiglio, Jr._, Jun 20 2021