cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345526 Numbers that are the sum of seven cubes in eight or more ways.

This page as a plain text file.
%I A345526 #7 Aug 05 2021 15:22:35
%S A345526 1385,1496,1515,1552,1557,1585,1587,1603,1613,1622,1648,1655,1665,
%T A345526 1674,1681,1704,1711,1718,1719,1720,1737,1739,1741,1746,1753,1755,
%U A345526 1765,1767,1772,1774,1781,1782,1793,1800,1802,1805,1809,1811,1818,1819,1826,1828,1830
%N A345526 Numbers that are the sum of seven cubes in eight or more ways.
%H A345526 Sean A. Irvine, <a href="/A345526/b345526.txt">Table of n, a(n) for n = 1..10000</a>
%e A345526 1496 is a term because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3.
%o A345526 (Python)
%o A345526 from itertools import combinations_with_replacement as cwr
%o A345526 from collections import defaultdict
%o A345526 keep = defaultdict(lambda: 0)
%o A345526 power_terms = [x**3 for x in range(1, 1000)]
%o A345526 for pos in cwr(power_terms, 7):
%o A345526     tot = sum(pos)
%o A345526     keep[tot] += 1
%o A345526     rets = sorted([k for k, v in keep.items() if v >= 8])
%o A345526     for x in range(len(rets)):
%o A345526         print(rets[x])
%Y A345526 Cf. A345485, A345517, A345525, A345527, A345538, A345574, A345780.
%K A345526 nonn
%O A345526 1,1
%A A345526 _David Consiglio, Jr._, Jun 20 2021