cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345527 Numbers that are the sum of seven cubes in nine or more ways.

This page as a plain text file.
%I A345527 #7 Aug 05 2021 15:22:39
%S A345527 1496,1648,1704,1711,1720,1737,1772,1774,1781,1800,1802,1835,1837,
%T A345527 1844,1863,1882,1889,1891,1893,1898,1900,1907,1912,1919,1926,1938,
%U A345527 1945,1952,1954,1961,1963,1982,1989,1996,2000,2008,2012,2015,2019,2026,2045,2052,2053
%N A345527 Numbers that are the sum of seven cubes in nine or more ways.
%H A345527 Sean A. Irvine, <a href="/A345527/b345527.txt">Table of n, a(n) for n = 1..10000</a>
%e A345527 1648 is a term because 1648 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 5^3 + 6^3 + 6^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 + 8^3 = 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 7^3.
%o A345527 (Python)
%o A345527 from itertools import combinations_with_replacement as cwr
%o A345527 from collections import defaultdict
%o A345527 keep = defaultdict(lambda: 0)
%o A345527 power_terms = [x**3 for x in range(1, 1000)]
%o A345527 for pos in cwr(power_terms, 7):
%o A345527     tot = sum(pos)
%o A345527     keep[tot] += 1
%o A345527     rets = sorted([k for k, v in keep.items() if v >= 9])
%o A345527     for x in range(len(rets)):
%o A345527         print(rets[x])
%Y A345527 Cf. A345486, A345506, A345518, A345526, A345539, A345575, A345781.
%K A345527 nonn
%O A345527 1,1
%A A345527 _David Consiglio, Jr._, Jun 20 2021