This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345533 #6 Aug 05 2021 15:20:46 %S A345533 223,230,237,249,256,263,270,275,282,284,286,289,291,293,308,310,312, %T A345533 319,326,345,347,349,354,364,371,373,375,378,380,382,385,386,387,389, %U A345533 397,399,401,404,406,408,410,412,413,415,420,423,427,434,438,439,441,443 %N A345533 Numbers that are the sum of eight cubes in three or more ways. %H A345533 Sean A. Irvine, <a href="/A345533/b345533.txt">Table of n, a(n) for n = 1..10000</a> %e A345533 230 is a term because 230 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3. %o A345533 (Python) %o A345533 from itertools import combinations_with_replacement as cwr %o A345533 from collections import defaultdict %o A345533 keep = defaultdict(lambda: 0) %o A345533 power_terms = [x**3 for x in range(1, 1000)] %o A345533 for pos in cwr(power_terms, 8): %o A345533 tot = sum(pos) %o A345533 keep[tot] += 1 %o A345533 rets = sorted([k for k, v in keep.items() if v >= 3]) %o A345533 for x in range(len(rets)): %o A345533 print(rets[x]) %Y A345533 Cf. A345490, A345521, A345532, A345534, A345542, A345578, A345785. %K A345533 nonn %O A345533 1,1 %A A345533 _David Consiglio, Jr._, Jun 20 2021