cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345533 Numbers that are the sum of eight cubes in three or more ways.

This page as a plain text file.
%I A345533 #6 Aug 05 2021 15:20:46
%S A345533 223,230,237,249,256,263,270,275,282,284,286,289,291,293,308,310,312,
%T A345533 319,326,345,347,349,354,364,371,373,375,378,380,382,385,386,387,389,
%U A345533 397,399,401,404,406,408,410,412,413,415,420,423,427,434,438,439,441,443
%N A345533 Numbers that are the sum of eight cubes in three or more ways.
%H A345533 Sean A. Irvine, <a href="/A345533/b345533.txt">Table of n, a(n) for n = 1..10000</a>
%e A345533 230 is a term because 230 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
%o A345533 (Python)
%o A345533 from itertools import combinations_with_replacement as cwr
%o A345533 from collections import defaultdict
%o A345533 keep = defaultdict(lambda: 0)
%o A345533 power_terms = [x**3 for x in range(1, 1000)]
%o A345533 for pos in cwr(power_terms, 8):
%o A345533     tot = sum(pos)
%o A345533     keep[tot] += 1
%o A345533     rets = sorted([k for k, v in keep.items() if v >= 3])
%o A345533     for x in range(len(rets)):
%o A345533         print(rets[x])
%Y A345533 Cf. A345490, A345521, A345532, A345534, A345542, A345578, A345785.
%K A345533 nonn
%O A345533 1,1
%A A345533 _David Consiglio, Jr._, Jun 20 2021