This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345534 #6 Aug 05 2021 15:20:49 %S A345534 256,347,382,401,408,427,434,438,445,464,471,478,480,490,497,499,502, %T A345534 504,506,511,516,523,530,532,534,537,560,565,567,569,571,578,586,593, %U A345534 595,597,600,602,604,605,611,612,616,619,621,623,624,626,628,630,635,642 %N A345534 Numbers that are the sum of eight cubes in four or more ways. %H A345534 Sean A. Irvine, <a href="/A345534/b345534.txt">Table of n, a(n) for n = 1..10000</a> %e A345534 347 is a term because 347 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3. %o A345534 (Python) %o A345534 from itertools import combinations_with_replacement as cwr %o A345534 from collections import defaultdict %o A345534 keep = defaultdict(lambda: 0) %o A345534 power_terms = [x**3 for x in range(1, 1000)] %o A345534 for pos in cwr(power_terms, 8): %o A345534 tot = sum(pos) %o A345534 keep[tot] += 1 %o A345534 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345534 for x in range(len(rets)): %o A345534 print(rets[x]) %Y A345534 Cf. A345491, A345522, A345533, A345535, A345543, A345579, A345786. %K A345534 nonn %O A345534 1,1 %A A345534 _David Consiglio, Jr._, Jun 20 2021