This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345536 #6 Aug 05 2021 15:20:56 %S A345536 628,719,769,776,778,795,832,839,846,858,860,865,872,875,876,882,886, %T A345536 891,893,895,901,902,907,908,912,921,927,928,931,938,945,946,947,951, %U A345536 954,956,958,963,964,965,970,972,977,982,984,989,991,992,996,998,999,1001 %N A345536 Numbers that are the sum of eight cubes in six or more ways. %H A345536 Sean A. Irvine, <a href="/A345536/b345536.txt">Table of n, a(n) for n = 1..10000</a> %e A345536 719 is a term because 719 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3. %o A345536 (Python) %o A345536 from itertools import combinations_with_replacement as cwr %o A345536 from collections import defaultdict %o A345536 keep = defaultdict(lambda: 0) %o A345536 power_terms = [x**3 for x in range(1, 1000)] %o A345536 for pos in cwr(power_terms, 8): %o A345536 tot = sum(pos) %o A345536 keep[tot] += 1 %o A345536 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345536 for x in range(len(rets)): %o A345536 print(rets[x]) %Y A345536 Cf. A345493, A345524, A345535, A345537, A345545, A345581, A345788. %K A345536 nonn %O A345536 1,1 %A A345536 _David Consiglio, Jr._, Jun 20 2021