cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345537 Numbers that are the sum of eight cubes in seven or more ways.

This page as a plain text file.
%I A345537 #6 Aug 05 2021 15:20:59
%S A345537 902,908,921,938,958,963,970,977,982,984,991,996,1003,1008,1010,1017,
%T A345537 1019,1028,1029,1033,1047,1054,1055,1058,1061,1062,1070,1073,1075,
%U A345537 1080,1087,1090,1091,1094,1096,1097,1099,1104,1106,1108,1110,1111,1113,1115,1116
%N A345537 Numbers that are the sum of eight cubes in seven or more ways.
%H A345537 Sean A. Irvine, <a href="/A345537/b345537.txt">Table of n, a(n) for n = 1..10000</a>
%e A345537 908 is a term because 908 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3.
%o A345537 (Python)
%o A345537 from itertools import combinations_with_replacement as cwr
%o A345537 from collections import defaultdict
%o A345537 keep = defaultdict(lambda: 0)
%o A345537 power_terms = [x**3 for x in range(1, 1000)]
%o A345537 for pos in cwr(power_terms, 8):
%o A345537     tot = sum(pos)
%o A345537     keep[tot] += 1
%o A345537     rets = sorted([k for k, v in keep.items() if v >= 7])
%o A345537     for x in range(len(rets)):
%o A345537         print(rets[x])
%Y A345537 Cf. A345494, A345525, A345536, A345538, A345546, A345582, A345789.
%K A345537 nonn
%O A345537 1,1
%A A345537 _David Consiglio, Jr._, Jun 20 2021