This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345538 #6 Aug 05 2021 15:21:03 %S A345538 970,977,984,1054,1073,1075,1080,1090,1099,1106,1110,1125,1129,1136, %T A345538 1148,1160,1166,1171,1178,1181,1185,1186,1188,1192,1197,1204,1206, %U A345538 1211,1217,1218,1223,1225,1230,1232,1234,1236,1237,1242,1243,1249,1262,1263,1269,1273 %N A345538 Numbers that are the sum of eight cubes in eight or more ways. %H A345538 Sean A. Irvine, <a href="/A345538/b345538.txt">Table of n, a(n) for n = 1..10000</a> %e A345538 977 is a term because 977 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 8^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3. %o A345538 (Python) %o A345538 from itertools import combinations_with_replacement as cwr %o A345538 from collections import defaultdict %o A345538 keep = defaultdict(lambda: 0) %o A345538 power_terms = [x**3 for x in range(1, 1000)] %o A345538 for pos in cwr(power_terms, 8): %o A345538 tot = sum(pos) %o A345538 keep[tot] += 1 %o A345538 rets = sorted([k for k, v in keep.items() if v >= 8]) %o A345538 for x in range(len(rets)): %o A345538 print(rets[x]) %Y A345538 Cf. A345495, A345526, A345537, A345539, A345547, A345583, A345790. %K A345538 nonn %O A345538 1,1 %A A345538 _David Consiglio, Jr._, Jun 20 2021