cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345538 Numbers that are the sum of eight cubes in eight or more ways.

This page as a plain text file.
%I A345538 #6 Aug 05 2021 15:21:03
%S A345538 970,977,984,1054,1073,1075,1080,1090,1099,1106,1110,1125,1129,1136,
%T A345538 1148,1160,1166,1171,1178,1181,1185,1186,1188,1192,1197,1204,1206,
%U A345538 1211,1217,1218,1223,1225,1230,1232,1234,1236,1237,1242,1243,1249,1262,1263,1269,1273
%N A345538 Numbers that are the sum of eight cubes in eight or more ways.
%H A345538 Sean A. Irvine, <a href="/A345538/b345538.txt">Table of n, a(n) for n = 1..10000</a>
%e A345538 977 is a term because 977 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 8^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3.
%o A345538 (Python)
%o A345538 from itertools import combinations_with_replacement as cwr
%o A345538 from collections import defaultdict
%o A345538 keep = defaultdict(lambda: 0)
%o A345538 power_terms = [x**3 for x in range(1, 1000)]
%o A345538 for pos in cwr(power_terms, 8):
%o A345538     tot = sum(pos)
%o A345538     keep[tot] += 1
%o A345538     rets = sorted([k for k, v in keep.items() if v >= 8])
%o A345538     for x in range(len(rets)):
%o A345538         print(rets[x])
%Y A345538 Cf. A345495, A345526, A345537, A345539, A345547, A345583, A345790.
%K A345538 nonn
%O A345538 1,1
%A A345538 _David Consiglio, Jr._, Jun 20 2021