cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345539 Numbers that are the sum of eight cubes in nine or more ways.

This page as a plain text file.
%I A345539 #6 Aug 05 2021 15:21:05
%S A345539 984,1080,1136,1171,1185,1192,1197,1204,1223,1243,1262,1269,1273,1280,
%T A345539 1288,1295,1299,1306,1318,1325,1332,1333,1337,1344,1356,1360,1369,
%U A345539 1370,1374,1377,1379,1386,1393,1397,1400,1404,1406,1412,1415,1416,1419,1422,1423
%N A345539 Numbers that are the sum of eight cubes in nine or more ways.
%H A345539 Sean A. Irvine, <a href="/A345539/b345539.txt">Table of n, a(n) for n = 1..10000</a>
%e A345539 1080 is a term because 1080 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3.
%o A345539 (Python)
%o A345539 from itertools import combinations_with_replacement as cwr
%o A345539 from collections import defaultdict
%o A345539 keep = defaultdict(lambda: 0)
%o A345539 power_terms = [x**3 for x in range(1, 1000)]
%o A345539 for pos in cwr(power_terms, 8):
%o A345539     tot = sum(pos)
%o A345539     keep[tot] += 1
%o A345539     rets = sorted([k for k, v in keep.items() if v >= 9])
%o A345539     for x in range(len(rets)):
%o A345539         print(rets[x])
%Y A345539 Cf. A345496, A345527, A345538, A345540, A345548, A345584, A345791.
%K A345539 nonn
%O A345539 1,1
%A A345539 _David Consiglio, Jr._, Jun 20 2021