This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345539 #6 Aug 05 2021 15:21:05 %S A345539 984,1080,1136,1171,1185,1192,1197,1204,1223,1243,1262,1269,1273,1280, %T A345539 1288,1295,1299,1306,1318,1325,1332,1333,1337,1344,1356,1360,1369, %U A345539 1370,1374,1377,1379,1386,1393,1397,1400,1404,1406,1412,1415,1416,1419,1422,1423 %N A345539 Numbers that are the sum of eight cubes in nine or more ways. %H A345539 Sean A. Irvine, <a href="/A345539/b345539.txt">Table of n, a(n) for n = 1..10000</a> %e A345539 1080 is a term because 1080 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3. %o A345539 (Python) %o A345539 from itertools import combinations_with_replacement as cwr %o A345539 from collections import defaultdict %o A345539 keep = defaultdict(lambda: 0) %o A345539 power_terms = [x**3 for x in range(1, 1000)] %o A345539 for pos in cwr(power_terms, 8): %o A345539 tot = sum(pos) %o A345539 keep[tot] += 1 %o A345539 rets = sorted([k for k, v in keep.items() if v >= 9]) %o A345539 for x in range(len(rets)): %o A345539 print(rets[x]) %Y A345539 Cf. A345496, A345527, A345538, A345540, A345548, A345584, A345791. %K A345539 nonn %O A345539 1,1 %A A345539 _David Consiglio, Jr._, Jun 20 2021