This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345540 #6 Aug 05 2021 15:21:09 %S A345540 1185,1243,1262,1288,1295,1299,1386,1393,1397,1400,1412,1419,1423, %T A345540 1448,1449,1451,1458,1460,1464,1467,1475,1477,1497,1501,1503,1504, %U A345540 1505,1512,1513,1514,1516,1521,1523,1539,1540,1541,1542,1553,1558,1559,1560,1565,1566 %N A345540 Numbers that are the sum of eight cubes in ten or more ways. %H A345540 Sean A. Irvine, <a href="/A345540/b345540.txt">Table of n, a(n) for n = 1..10000</a> %e A345540 1243 is a term because 1243 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 8^3 = 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 7^3. %o A345540 (Python) %o A345540 from itertools import combinations_with_replacement as cwr %o A345540 from collections import defaultdict %o A345540 keep = defaultdict(lambda: 0) %o A345540 power_terms = [x**3 for x in range(1, 1000)] %o A345540 for pos in cwr(power_terms, 8): %o A345540 tot = sum(pos) %o A345540 keep[tot] += 1 %o A345540 rets = sorted([k for k, v in keep.items() if v >= 10]) %o A345540 for x in range(len(rets)): %o A345540 print(rets[x]) %Y A345540 Cf. A345497, A345506, A345539, A345549, A345585, A345792. %K A345540 nonn %O A345540 1,1 %A A345540 _David Consiglio, Jr._, Jun 20 2021