This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345541 #6 Aug 05 2021 15:18:59 %S A345541 72,133,140,147,159,161,166,168,175,182,185,187,189,194,196,198,201, %T A345541 203,205,208,213,217,220,222,224,227,231,238,239,243,245,246,250,252, %U A345541 257,259,261,264,265,266,271,273,276,278,280,283,285,287,289,290,292,294 %N A345541 Numbers that are the sum of nine cubes in two or more ways. %H A345541 Sean A. Irvine, <a href="/A345541/b345541.txt">Table of n, a(n) for n = 1..10000</a> %e A345541 133 is a term because 133 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3. %o A345541 (Python) %o A345541 from itertools import combinations_with_replacement as cwr %o A345541 from collections import defaultdict %o A345541 keep = defaultdict(lambda: 0) %o A345541 power_terms = [x**3 for x in range(1, 1000)] %o A345541 for pos in cwr(power_terms, 9): %o A345541 tot = sum(pos) %o A345541 keep[tot] += 1 %o A345541 rets = sorted([k for k, v in keep.items() if v >= 2]) %o A345541 for x in range(len(rets)): %o A345541 print(rets[x]) %Y A345541 Cf. A003332, A345499, A345532, A345542, A345550, A345586, A345794. %K A345541 nonn %O A345541 1,1 %A A345541 _David Consiglio, Jr._, Jun 20 2021