cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345543 Numbers that are the sum of nine cubes in four or more ways.

This page as a plain text file.
%I A345543 #6 Aug 05 2021 15:19:07
%S A345543 224,257,264,283,320,348,355,372,374,376,381,383,390,400,402,407,409,
%T A345543 411,413,414,416,428,435,439,442,446,450,453,454,461,465,472,474,476,
%U A345543 479,481,486,488,491,498,500,502,503,505,507,509,510,512,514,517,519,524
%N A345543 Numbers that are the sum of nine cubes in four or more ways.
%H A345543 Sean A. Irvine, <a href="/A345543/b345543.txt">Table of n, a(n) for n = 1..10000</a>
%e A345543 257 is a term because 257 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3.
%o A345543 (Python)
%o A345543 from itertools import combinations_with_replacement as cwr
%o A345543 from collections import defaultdict
%o A345543 keep = defaultdict(lambda: 0)
%o A345543 power_terms = [x**3 for x in range(1, 1000)]
%o A345543 for pos in cwr(power_terms, 9):
%o A345543     tot = sum(pos)
%o A345543     keep[tot] += 1
%o A345543     rets = sorted([k for k, v in keep.items() if v >= 4])
%o A345543     for x in range(len(rets)):
%o A345543         print(rets[x])
%Y A345543 Cf. A345501, A345534, A345542, A345544, A345552, A345588, A345796.
%K A345543 nonn
%O A345543 1,1
%A A345543 _David Consiglio, Jr._, Jun 20 2021