This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345543 #6 Aug 05 2021 15:19:07 %S A345543 224,257,264,283,320,348,355,372,374,376,381,383,390,400,402,407,409, %T A345543 411,413,414,416,428,435,439,442,446,450,453,454,461,465,472,474,476, %U A345543 479,481,486,488,491,498,500,502,503,505,507,509,510,512,514,517,519,524 %N A345543 Numbers that are the sum of nine cubes in four or more ways. %H A345543 Sean A. Irvine, <a href="/A345543/b345543.txt">Table of n, a(n) for n = 1..10000</a> %e A345543 257 is a term because 257 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3. %o A345543 (Python) %o A345543 from itertools import combinations_with_replacement as cwr %o A345543 from collections import defaultdict %o A345543 keep = defaultdict(lambda: 0) %o A345543 power_terms = [x**3 for x in range(1, 1000)] %o A345543 for pos in cwr(power_terms, 9): %o A345543 tot = sum(pos) %o A345543 keep[tot] += 1 %o A345543 rets = sorted([k for k, v in keep.items() if v >= 4]) %o A345543 for x in range(len(rets)): %o A345543 print(rets[x]) %Y A345543 Cf. A345501, A345534, A345542, A345544, A345552, A345588, A345796. %K A345543 nonn %O A345543 1,1 %A A345543 _David Consiglio, Jr._, Jun 20 2021