This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345544 #6 Aug 05 2021 15:19:10 %S A345544 409,413,428,435,439,446,465,472,479,491,498,502,505,507,512,517,524, %T A345544 526,531,533,535,538,540,559,561,563,566,568,570,576,579,580,587,594, %U A345544 596,598,600,601,603,605,613,615,617,620,622,624,627,629,631,632,633,635 %N A345544 Numbers that are the sum of nine cubes in five or more ways. %H A345544 Sean A. Irvine, <a href="/A345544/b345544.txt">Table of n, a(n) for n = 1..10000</a> %e A345544 413 is a term because 413 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3. %o A345544 (Python) %o A345544 from itertools import combinations_with_replacement as cwr %o A345544 from collections import defaultdict %o A345544 keep = defaultdict(lambda: 0) %o A345544 power_terms = [x**3 for x in range(1, 1000)] %o A345544 for pos in cwr(power_terms, 9): %o A345544 tot = sum(pos) %o A345544 keep[tot] += 1 %o A345544 rets = sorted([k for k, v in keep.items() if v >= 5]) %o A345544 for x in range(len(rets)): %o A345544 print(rets[x]) %Y A345544 Cf. A345502, A345535, A345543, A345545, A345553, A345589, A345797. %K A345544 nonn %O A345544 1,1 %A A345544 _David Consiglio, Jr._, Jun 20 2021