This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345546 #6 Aug 05 2021 15:19:16 %S A345546 624,629,631,650,657,687,694,707,713,720,727,744,746,753,755,763,768, %T A345546 770,777,779,781,784,786,789,792,796,798,803,805,807,818,820,822,824, %U A345546 831,833,840,842,844,847,848,849,854,859,861,866,868,870,873,875,876,877 %N A345546 Numbers that are the sum of nine cubes in seven or more ways. %H A345546 Sean A. Irvine, <a href="/A345546/b345546.txt">Table of n, a(n) for n = 1..10000</a> %e A345546 629 is a term because 629 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3. %o A345546 (Python) %o A345546 from itertools import combinations_with_replacement as cwr %o A345546 from collections import defaultdict %o A345546 keep = defaultdict(lambda: 0) %o A345546 power_terms = [x**3 for x in range(1, 1000)] %o A345546 for pos in cwr(power_terms, 9): %o A345546 tot = sum(pos) %o A345546 keep[tot] += 1 %o A345546 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A345546 for x in range(len(rets)): %o A345546 print(rets[x]) %Y A345546 Cf. A345504, A345537, A345545, A345547, A345555, A345591, A345799. %K A345546 nonn %O A345546 1,1 %A A345546 _David Consiglio, Jr._, Jun 20 2021