cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345547 Numbers that are the sum of nine cubes in eight or more ways.

This page as a plain text file.
%I A345547 #6 Aug 05 2021 15:19:20
%S A345547 744,770,805,818,840,842,844,847,859,861,866,868,877,880,883,887,894,
%T A345547 896,903,908,909,910,911,913,915,916,920,922,929,935,939,940,945,946,
%U A345547 948,950,952,954,955,957,959,961,964,965,966,971,972,973,976,978,983,985
%N A345547 Numbers that are the sum of nine cubes in eight or more ways.
%H A345547 Sean A. Irvine, <a href="/A345547/b345547.txt">Table of n, a(n) for n = 1..10000</a>
%e A345547 770 is a term because 770 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3.
%o A345547 (Python)
%o A345547 from itertools import combinations_with_replacement as cwr
%o A345547 from collections import defaultdict
%o A345547 keep = defaultdict(lambda: 0)
%o A345547 power_terms = [x**3 for x in range(1, 1000)]
%o A345547 for pos in cwr(power_terms, 9):
%o A345547     tot = sum(pos)
%o A345547     keep[tot] += 1
%o A345547     rets = sorted([k for k, v in keep.items() if v >= 8])
%o A345547     for x in range(len(rets)):
%o A345547         print(rets[x])
%Y A345547 Cf. A345505, A345538, A345546, A345548, A345556, A345592, A345800.
%K A345547 nonn
%O A345547 1,1
%A A345547 _David Consiglio, Jr._, Jun 20 2021